Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ TAM GIÁC ABH VUÔNG TẠI H ;A/D ĐỊNH LÝ PYTAGO TA CÓ
\(AB^2=AH^2+BH^2=>BH^2=AB^2-AH^2\)
=>\(BH^2=15^2-12^2=>BH^2=81=>BH=9'\left(cm\right)\)
=>\(BC=9+16=25\left(cm\right)\)
ta có \(\Delta AHC\) VUÔNG TẠI H A/D ĐỊNHLÝ PYTAGO TA CÓ
\(AC^2=AH^2+HC^2=>AC^2=12^2+16^2\)
=>\(AC^2=400=>AC=20\left(cm\right)\)
Xét tam giác BAH
Có B+BAH=900(vì tam giác BAH vuông tại H)
500+BAH=900
=>BAH=900-500
=>BAH=400
Xét tam giác HAC
Có C+HAC=900(Tam giác HAC vuông tại H)
400+HAC= 900
HAC=900-400
HAC=500
B)Xét tam giác ABH
Có AB2 = HB2+AH2(Theo định lý Pi-ta-go)
AB2=32+42
AB2=25=52
AB=5
Xét tam giác CAH
Có AC2=AH2+HC2 (Theo định lý Pi-ta-go)
AC2=42+42=32=
Vì H ∈∈ BC nên ta có :
BC = BH + HC => 8 = 3 + HC
=> HC = 8 - 3 => HC = 5 cm
Áp dụng định lý pytago vào :
+) ΔABH ta có: AB^2 = BH^2 + AH^2 => AH^2 = AB^2 - BH^2
=> AH^2 = 562 - 3^2 => AH^2 = 25 - 9
=> AH^2 = 16 => AH = 4cm (do AH > 0cm )
+) ΔAHC có : AC^2 = AH^2 + HC^ 2 => AC ^2 = 4^2 + 5^2
=> AC^2 = 16 + 25 => AC^2 = 41
=> AC = \(\sqrt{41}cm\left(do\right)AC>0cm\)
Vậy AH = 4 cm ; HC = 5 cm ; AC = \(\sqrt{41}\)
Học tốt
Hình: tự vẽ (nha anh lp trưởng) =.=
a, \(\Delta AHC\)có: \(\widehat{HAC}=180^o-\left(\widehat{AHC}+\widehat{C}\right)=180^o-120^o=60^o\)
b, *Áp dụng định lí Pytago vào \(\Delta ABH\),có:
\(AH^2=AB^2-BH^2\)
\(\Rightarrow AH^2=25-9=16\)
\(\Rightarrow AH=4\)(cm)
*Ta có: \(HC=BC-BH=10-3=7\)(cm)
* Theo đ/lí Pytago, có: \(AH^2+HC^2=AC^2\)
\(\Rightarrow16+49=AC^2\)
\(\Rightarrow AC^2=65\)
\(\Rightarrow AC=\sqrt{65}\)(cm)
Bạn tham khảo link này nha;
https://olm.vn/hoi-dap/detail/242922769259.html
Chúc bạn học tốt
Forever
Cho tam giác ABC, kẻ AH ⊥ BC. Biết AB = 5 cm, BH = 3 cm, BC = 8 cm. Tính độ dài các cạnh AH, HC, AC?
A A A B B B C C C H H H 5 3 8
Xét \(\Delta ABH\)vuông tại H ta có :
\(AB^2+BH^2=AH^2\)(định lí Pitago)
=> \(AH^2=AB^2-BH^2\)
=> \(AH^2=5^2-3^2\)
=> \(AH^2=25-9=16\)
=> \(AH=4\left(cm\right)\)
Ta có : \(BH+HC=BC\)
=> \(3+HC=8\)
=> \(HC=5\left(cm\right)\)
Xét \(\Delta AHC\)vuông tại H ta có :
\(AH^2+HC^2=AC^2\)
=> \(4^2+5^2=AC^2\)
=> \(16+25=AC^2\)
=> \(AC^2=41\)
=> \(AC=\sqrt{41}\)(vì AC > 0)