K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

\(AB=\sqrt{9^2+12^2}=15\left(cm\right)\)

14 tháng 5 2022

\(BC=BH+HC=9+16=25\left(cm\right)\)

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{25^2-20^2}=15\left(cm\right)\)

Áp dụng định lý pitago vào tam giác vuông ABH, có:

\(AB^2=BH^2+AH^2\)

\(\rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)

a: \(AB^2-BH^2=AB^2\)

\(AC^2-CH^2=AH^2\)

Do đó: \(AB^2-BH^2=AC^2-CH^2\)

hay \(AB^2+CH^2=AC^2+BH^2\)

c: AH=4,8cm

BH=3,6cm

CH=6,4cm

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

9 tháng 5 2021

a) Chứng minh HB=HC:                                                                              Xét ΔAHB và ΔAHC có:                                                                         ∠AHB=∠AHC=90(độ)                                                                                   AH cạnh chung                                                                                             AB=AC(gt)                                                                                                     ⇒ ΔAHB = ΔAHC (ch-cgv)  ⇒ HB=HC (2 cạnh tương ứng)

b) Ta có: HB=HC=BC/2=6/2=3(cm)                                                              Ta có: ΔAHB vuông tại H.                                                                              ⇒ AH(mũ 2)+BH(mũ 2)=AB(mũ 2) ⇒ AH(mũ 2)=AB(mũ 2)-BH(mũ 2)          =4(mũ 2)-3(mũ 2)=16-9=7 ⇒ AH=√7(cm) 

c)                                                                                                                  Ta có: ΔAHB = ΔAHC ⇒ ∠BAH=∠CAH                                                      Xét ΔAHD và ΔAHE có:                                                                              ∠D=∠E=90(độ)                                                                                          AH cạnh chung                                                                                             ∠BAH=∠CAH (gt)                                                                                        ⇒ ΔAHD = ΔAHE (ch-gn) ⇒ DH=EH ⇒ ΔHDE cân tại H. A B C H D E

                                                                                                  

10 tháng 5 2021

Cảm ơn bạn

 

21 tháng 3 2022

AB=5

HC=5

21 tháng 3 2022

Cách làm thế nào vậy

14 tháng 1 2018

A B C H

Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\)

Theo định lí Py ta go ta cs :

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AB^2=12^2+9^2\)

\(\Leftrightarrow AB^2=225\)

\(\Leftrightarrow AB=15cm\)

Xét \(\Delta AHC\) có \(\widehat{AHC}=90^0\)

Theo định lí Py ta go ta có :

\(AC^2=HC^2+AH^2\)

\(\Leftrightarrow AC^2=16^2+12^2\)

\(\Leftrightarrow AC^2=400\)

\(\Leftrightarrow AC=20cm\)

b/ Ta có :

\(HB+HC=BC\)

\(\Leftrightarrow BC=9+16=25cm\)

Lại có :

\(AB^2+AC^2=15^2+20^2=225+400=625cm\)

\(BC^2=25^2=625cm\)

\(\Leftrightarrow AB^2+AC^2=BC^2\)

Theo định lí Py ta go đảo thì tam giác ABC vuông tại A