Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, N; P lần lượt là trung điểm của AC; BC (gt)
=> NP là đtb của tam giác ABC (Đn)
=> NP // AB (Đl)
=> góc PNA + CAB = 180 (đl)
có góc CAB = 90 do tam giác ABC vuông tại A (gt)
=> góc PNA = 90
chứng minh tương tự với góc PMA
=> NPMA Là hình chữ nhật
b, N đối xứng với E qua M (gt)
=> M là trung điểm của NE (đn)
M là trung điểm của AB (gt)
=> ANBE là hình bình hành (dấu hiệu)
Xét ΔBCA có
N là trung điểm của AC
P là trung điểm của BC
Do đó: NP là đường trung bình của ΔBCA
Suy ra: NP//MB và NP=MB
hay BMNP là hình bình hành
a: Xét ΔABC có
P là trung điểm của AC
N là trung điểm của BC
Do đó: PN là đường trung bình của ΔBAC
Suy ra: PN//AB và \(PN=\dfrac{AB}{2}\)
mà M\(\in\)AB và \(AM=\dfrac{AB}{2}\)
nên PN//AM và PN=AM
Xét tứ giác AMNP có
PN//AM
PN=AM
Do đó: AMNP là hình bình hành
mà \(\widehat{PAM}=90^0\)
nên AMNP là hình chữ nhật
a: Xét ΔCAB có CP/CA=CN/CB
nên PN//AB và PN=AB/2
=>PN//AM và PN=AM
=>AMNP là hình bình hành
mà góc PAM=90 độ
nên AMNP là hình chữ nhật
b: \(AC=\sqrt{10^2-8^2}=6\left(cm\right)\)
AH=6*8/10=4,8cm
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)
\(\Leftrightarrow MN=\dfrac{12}{2}=6\left(cm\right)\)
b: Ta có: MN//AC và \(MN=\dfrac{AC}{2}\)
mà P\(\in\)AC và \(AP=\dfrac{AC}{2}\)(P là trung điểm của AC
nên MN//AP và MN=AP
Xét ΔABC có
M là trung điểm của AB
P là trung điểm của AC
Do đó: MP là đường trung bình của ΔABC
Suy ra: MP//BC và \(MP=\dfrac{BC}{2}\)
mà N\(\in\)BC và \(BM=\dfrac{BC}{2}\)
nên MP//BN và MP=BN
Xét tứ giác AMNP có
MN//AP
MN=AP
Do đó: AMNP là hình bình hành
Xét tứ giác BMPN có
MP//BN
MP=BN
Do đó: BMPN là hình bình hành
c) Hình bình hành AMNP trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MAP}=90^0\\AM=AP\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{BAC}=90^0\\AB=AC\end{matrix}\right.\)