K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2021

a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

Do đó MN//BC hay BMNC là hthang

b, Vì N là trung điểm AC và ME(tc đối xứng) nên AECM là hbh

a) Xét tứ giác AEMF có

\(\widehat{EAF}=90^0\)(gt)

\(\widehat{AEM}=90^0\)(gt)

\(\widehat{AFM}=90^0\)(gt)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Xét ΔABC có

M là trung điểm của BC(gt)

MF//AB(cùng vuông góc với AC)

Do đó: F là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

F là trung điểm của AC(cmt)

Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà AE=MF(AFME là hình chữ nhật)

nên \(AE=\dfrac{AB}{2}\)

mà A,E,B thẳng hàng(gt)

nên E là trung điểm của AB

Ta có: F là trung điểm của NM(gt)

nên \(MN=2\cdot MF\)(1)

Ta có: E là trung điểm của AB(cmt)

nên AB=2AE(2)

Ta có: AEMF là hình chữ nhật(cmt)

nên MF=AE(Hai cạnh đối)(3)

Từ (1), (2) và (3) suy ra MN=AB

Xét tứ giác ABMN có 

MN//AB(cùng vuông góc với AC)

MN=AB(cmt)

Do đó: ABMN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

16 tháng 7 2023

Bạn xem lại đề

16 tháng 7 2023

? tam giác ABCD

29 tháng 11 2021

help với nha

 

30 tháng 11 2021

Xét tứ giác AEBM có

Hai đường chéo AB và EM cắt nhau tại trung điểm của mỗi đường và vuông góc với nhau

nên AEBM là hình thoi

  
18 tháng 7 2019

a) Vì AM là phân giác của góc BAC

nên góc BAM = CAM

Xét ΔBAM và ΔCAM có:

AB = AC ( giả thiết )

Góc BAM = CAM ( chứng minh trên )

AM cạnh chung.

=> Δ BAM = ΔCAM ( c.g.c )

=> BM = CM ( 2 cạnh tương ứng )

mà M nằm giữa B và C

Do đó M là trung điểm của BC → ĐPCM.

b) Ta có: AB + BE = AE

AC + CF = AF

mà AB = AC ( đề bài ); AE = AF (đề bài)

=> BE = CF.

Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )

Lại có: Góc ABC + CBE = 180 độ (kề bù)

Góc ACB + BCF = 180 độ (kề bù)

=> ABC + CBE = ACB + BCF

=> Góc CBE = BCF.

Xét ΔBCE và ΔCBF có:

BE = CF ( chứng minh trên)

Góc CBE = BCF ( chứng minh trên)

BC cạnh chung ( theo hình vẽ)

=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.

c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM

Xét ΔMBE và ΔMCF có:

MB = MC ( chứng minh ở câu a )

Góc EBM = FCM ( chứng minh trên)

BE = FC ( chứng minh ở câu b)

=> ΔMBE = ΔMCF ( c.g.c )

=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.

d) Xét ΔEMN và ΔFMN có:

EM = FM ( chứng minh ở câu c )

EN = FN ( N là trung điểm EF )

MN chung.

=> ΔEMN = ΔFMN.

=> Góc ENM = FNM (2 góc tương ứng)

Suy ra MN là tia phân giác của góc ENF (1)

Có: góc BAM = CAM

Suy ra AM là tia phân giác của góc BAC (2)

Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.

Do đó A, M, N thẳng hàng → ĐPCM.

25 tháng 3 2016

a/ Ta có AN vuông góc AC; HM vuông góc AC => AN//HM (1)

Ta có AM vuông góc AB; HN vuông góc AB => AM//HN (2)

=> Tứ giác AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

AH; MN là hai đường chéo của hbh nên chúng cắt nhau tại trung điểm mỗi đường

b/ Trước hết ta phải c/m A, I, K thẳng hàng

Nối AI; AK

+ Xét tam giác AHK có

Hình bình hành AMHN có ^MAN=90 => ^ANM =90 => AN vuông góc HK nà NK=NH

=> tam giác AKH cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến là tam giác cân)

=> ^KAN=^HAN (1) (trong tam giác cân đường cao đồng thời là đường phân giác)

+ Xét tam giác AIH chứng minh tương tự ta cũng có

^HAM=^IAM (2)

+ Mà ^HAN+^HAM=^BAC=90 (3)

Từ (1) (2) (3) => ^KAN+^IAM=^HAN+^HAM=90

=> ^KAN+^HAN+HAM+^IAM=180 => A,I,K thẳng hàng

+ Ở trên ta đã chứng minh được tam giác AKH và tam giác AIH là tam giác cân tại A

=> AK=AH=AI => A là trung điểm của IK

+ Xét tam giác

27 tháng 3 2016

mình chưa học hình bình hành hay tứ giác