Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7:
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔHDB vuông tại H và ΔKEC vuông tại K có
DB=EC
\(\widehat{HDB}=\widehat{KEC}\)
Do đó: ΔHDB=ΔKEC
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{IBC}\)
và \(\widehat{KCE}=\widehat{ICB}\)
nên \(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
c: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
Suy ra: \(\widehat{BIA}=\widehat{CIA}\)
hay IA là tia phân giác của góc BIC
a) Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(gt)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: BN=CM(hai cạnh tương ứng)
b) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
AH chung
HB=HC(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH⊥BC(đpcm)
c) Ta có: AH⊥BC(cmt)
mà H là trung điểm của BC(gt)
nên AH là đường trung trực của BC
⇔EH là đường trung trực của BC
⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)
Xét ΔEBC có EB=EC(cmt)
nên ΔEBC cân tại E(Định nghĩa tam giác cân)
a) Ta có: ΔABC cân tại A (gt)
=> ˆB=180−ˆA2B^=180−A^2 (công thức của tam giác cân xem trong SGK)
Và AB = AC
Vì BM + AM = CN + AN
Mà AB = AC (cmt) và BM = CN (gt)
Nên AM = AN
Do đó ΔAMN là tam giác cân
=> ˆM=180−ˆA2M^=180−A^2
=> ˆM=ˆBM^=B^
Mà hai góc này ở vị trí đồng vị
Nên MN // BC
Vậy MN // BC
b) Xét hai tam giác ANB và AMC có:
AN = AM (cmt)
ˆAA^ là góc chung
AB = AC (cmt)
Nên ΔANB = ΔAMC (c.g.c)
Do đó ˆABN=ˆACMABN^=ACM^ (hai góc tương ứng)
Lại có: ˆABC=ˆACBABC^=ACB^ (vì ΔABC cân tại A)
Nên ˆIBC=ˆICBIBC^=ICB^
=> ΔIBC cân tại I
Vậy tam giác IBC cân tại I