Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác MAD và tam giác MCB có:
MB=MD(gt)
MA=MC(gt)
AMD=BMC( 2 góc đđ)
suy ra tam giác MAD=MCB(c.g.c)
suy ra ADB=DBC suy ra AD//BC(1)
CM tương tự ta có tam giác EAN=CBN suy ra EA//BC(2)
từ (1)(2) suy ra AD//BC và EA// BC
suy ra A,D,E thẳng hàng
a) xét tam giác AMD và tam giác CMB có :
AM = CM ( vì Mlaf trung điểm của AC)
\(\widehat{AMD}=\widehat{CMB}\)(đối đỉnh)
MD = MB (gt)
=> tam giác AMD = tam giác CMB (c-g-c)
xét tam giác ANE và tam giác BNC có :
AN = BN ( vì N là trung điểm của AB)
\(\widehat{ANE}=\widehat{BNC}\)(đối đỉnh)
NE = CN (gt)
=> tam giác ANE = tam giác BNC (c-g-c)
b) vì tam giác AMD = tam giác CMB (cmt) => AD = BC (2 cạnh tương ứng)(1)
vì tam giác ANE = tam giác BNC (cmt) => AE = BC ( 2 cạnh tương ứng) (2)
từ (1), (2) => AD = AE (đpcm)
c) Vì tam giác AMD = tam giác CMB (cmt) => \(\widehat{MAD}=\widehat{MCB}\)(2 góc tương ứng)
mà \(\widehat{MAD}\)và \(\widehat{MCB}\)ở vị trí so le trong
do đó AD // BC (3)
Vì tam giác ANE = tam giác BNC (cmt) => \(\widehat{NAE}=\widehat{NBC}\)(2 góc tương ứng)
mà \(\widehat{NAE}\)và \(\widehat{NBC}\) ở vị trí so le trong
do đó AE // BC (4)
từ (3), (4) => A, E, D thẳng hàng (đpcm)
c, Xét \(\Delta AME\)và \(\Delta CMB\)có:
AM=CM(M là trung điểm của AC)
\(\widehat{AME}=\widehat{CMB}\)(2góc đối đỉnh)
ME=MB(gt)
\(\Rightarrow\)\(\Delta AME=\Delta CMB\)(c-g-c)
\(\Rightarrow\)AE=BC(2 cạnh tương ứng)(dpcm)
Do\(\Delta AME=\Delta CMB\)(c-g-c)
\(\Rightarrow\)\(\widehat{AEM}=\widehat{CBM}\)(2 góc tương ứng)
Mà 2 góc ở vị trí so le trong suy ra AE song song BC(dpcm)
a,Xét \(\Delta AMB\)và\(\Delta CME\)có
AM=CM(M là tđ của AC)
\(\widehat{AMB}=\widehat{CME}\)(2 góc đối đỉnh)
MB=ME(gt)
\(\Rightarrow\) \(\Delta AMB\)=\(\Delta CME\)(c-g-c)
\(\Rightarrow\)AB=CE(dpcm)
b, câu b tương tự câu a nhé
d, bạn chứng minh \(\Delta ANF=\Delta BNC\)(c-g-c)
\(\Rightarrow\)AF=BC (1)
lại có AE=BC(theo c) (2)
Từ (1), (2) \(\Rightarrow\)AE=AF
\(\Rightarrow\)A là trung điểm của EF(dpcm)
N B C M A F E
a) Xét tam giác MAE và tam giác MCB
có AM= AC (GT)
BM = ME(GT)
góc AME = góc CMB ( đối đỉnh)
suy ra tam giác MAE = tam giác MCB (c.g.c) (1)
b) Từ (1) suy ra AE = BC ( hai cạnh tương ứng) (2)
Xét tam giác ANF và tam giác BNC
có AN = BN(GT)
góc ANF = góc BNC ( đối đỉnh)
NF=NC (GT)
suy ra tam giác ANF = tam giác BNC (c.g.c) (3)
suy ra AF = BC ( hai cạnh tương ứng ) (4)
Từ (2) và (4) suy ra AE=AF (5)
c) Từ (1) suy ra góc MAE = góc C
Từ (3) suy ra góc FAB = góc B
mà góc BAC + góc B + góc C = 1800
suy ra góc BAC + góc MAE+góc FAB = 1800
hay góc EAF = 1800
suy ra ba điểm A, E, F thẳng hàng