K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

A B C I H K

a/ Vì AK // IH nên AI = KH và AK = IH ( vì phần ghi nhớ ở bài 1 đó )

Vì IK // HC nên IK = HC và IH = KC

Xét tam giác AIK và tam giác IKH có:

\(\hept{\begin{cases}AI=KH\\IK:canh\\AK=IH\end{cases}}chung\)

suy ra tam giác AIK = tam giác HKI ( c.c.c )

Xét tam giác IKH và tam giác KHC có :

\(\hept{\begin{cases}IK=HC\\KH:canh\\IH=KC\end{cases}}chung\)

suy ra tam giác HKI = tam giác KHC ( c.c.c )

mà tam giác AIK = tam giác HKI 

tam giác HKI = tam giác KHC

suy ra tam giác AIK = tam giac KHC( đpcm )

b/ Vì tam giác AIK = tam giác KHC

nên AK = CK ( vì là 2 cạnh tương ứng )

Vậy :........

hay AI = HK ( vì là 2 cạnh tương ứng )

mà AI = BI ( vì I là tring điểm của AB )

nên BI = HK ( = AI )

Vậy: ......

Vân Khánh đây là bài làm nhé! Nhớ k nghe! Thank you!!!

25 tháng 11 2017

a) Nối IH

Xét 2 tam giác: \(\Delta\)BIH  và \(\Delta\)KHI có

IH cạnh chung

\(\widehat{BIH}\)\(\widehat{KHI}\)( so le trong do AB // KH)

\(\widehat{IHB}\)\(\widehat{HIK}\)(  so le trong do IK // BC)

suy ra \(\Delta\)BIH = \(\Delta\)KHI (g.c.g)

\(\Rightarrow\)IB = KH (2 cạnh tương ứng)

mà IB = IA nên IA = KH

\(\widehat{AIK}\)\(\widehat{IBH}\)(đồng vị do IK // BC)

\(\widehat{IBH}\)\(\widehat{KHC}\)(đồng vị do KH // AB)

suy ra \(\widehat{AIK}\)\(\widehat{KHC}\)

Xét 2 tam giác: \(\Delta\)AIK    và   \(\Delta\)KHC có:

IA = HK  (cmt)

\(\widehat{AIK}\)\(\widehat{KHC}\)(cmt)

\(\widehat{IAK}\)\(\widehat{HKC}\)(đồng vị do HK // AB)

suy ra \(\Delta\)AIK = \(\Delta\)KHC (g.c.g)

b)   \(\Delta\)AIK = \(\Delta\)KHC  (theo phần a) \(\Rightarrow\)AK = KC (2 cạnh tương ứng) 

Xét \(\Delta\)AIK và \(\Delta\)HKI có:

AI = HK (cm)

\(\widehat{AIK}\)\(\widehat{HKI}\)(so le trong do HK // AB)

IK cạnh chung

suy ra  \(\Delta\)AIK = \(\Delta\)HKI (c.g.c)

\(\Rightarrow\)AK = IH (2 cạnh tương ứng)

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

24 tháng 12 2021

a: Xét ΔABH và ΔKBH có

BA=BK

\(\widehat{ABH}=\widehat{KBH}\)

BH chung

Do đó: ΔABH=ΔKBH