Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC là đường trung trực của HI
=>AC\(\perp\)HI tại trung điểm của HI
=>AC\(\perp\)HI tại M và M là trung điểm của HI
AB là đường trung trực của HK
=>AB\(\perp\)HK tại trung điểm của HK
=>AB\(\perp\)HK tại N và N là trung điểm của HK
Xét ΔAHI có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHI cân tại A
b: Xét ΔAHK có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHK cân tại A
Ta có: ΔAHK cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAK
=>\(\widehat{HAK}=2\cdot\widehat{HAB}\)
Ta có: ΔAHI cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAI
=>\(\widehat{HAI}=2\cdot\widehat{HAC}\)
Ta có: \(\widehat{IAK}=\widehat{IAH}+\widehat{HAK}\)
\(=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)
\(=2\left(\widehat{HAB}+\widehat{HAC}\right)=2\cdot90^0=180^0\)
=>I,A,K thẳng hàng
mà AK=AI(=AH)
nên A là trung điểm của KI
c: Xét ΔHKI có
M,N lần lượt là trung điểm của HI,HK
=>MN là đường trung bình của ΔHKI
=>MN//KI
a) Xét △ABM vuông tại A và △DBM vuông tại D có:
BM chung
AB=DB=3cm(gt)
=> △ABM=△DBM (cạnh huyền-cạnh góc vuông) => AM=DM(2 cạnh t/ứ)
b) Xét △AMN và △DMC có:
AMN=DMC(2 góc đối đỉnh)
AM=DM(cmt)
MAN=MDC(gt)
=> △AMN=△DMC(g.c.g) => MN=MC(2 cạnh tướng ứng) => △MCN cân tại M
c) Vì △AMN=△DMC(cmt) => AN=DC(2 cạnh tương ứng)
Ta có AB=BD;AN=DC;BN=AN+AB;BC=BD+DC => BN=BC=> △BNC cân tại B
Vì △ABM=△DBM(cmt)=> ABM=DBM=> NBK=CBK (A thuộc BN; D thuộc BC;M thuộc BK) => BK là phân giác NBC
=> Trong △BNC cân tại B, BK là đường phân giác, đường trung trực, đường trung tuyến, đường cao,... (t/c) => BK là đường trung trực của CN
d) Áp dụng định lý Pytago vào △ABC vuông tại A có: AB2+AC2=BC^2
=> 9+16=25=BC^2 (cm) => BC = 5 cm
Ta có BD+DC=BC;BD=3cm=> DC=2cm
Ta có AN=DC(cmt) => AN=2cm
Áp dụng định lý Pytago vào △ANC vuông tại A có:
AN^2+AC^2=NC^2
=> 4+16=NC^2
=> NC= căn 20 = 2 x căn 5 (cm)
Vì BK là trung trực NC => K là trung điểm NC => KC = 1/2 NC = căn 5 (cm)
Áp dụng định lý Pytago vào △BKC vuông tại K có:
BC^2=BK^2+KC^2 => BK^2=BC^2+KC^2=25-5=20cm => BK=căn 20=2 nhânnhân căn 5 (cm)