K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có I là giao điểm của các đường phân giác

nên AI là phân giác của góc BAC

Xét ΔADI vuông tại D và ΔAEI vuông tại E có

AI chung

góc DAI=góc EAI

Do đó: ΔADI=ΔAEI

Suy ra: ID=IE

b: \(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{A}\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=90^0-\dfrac{1}{2}\cdot\widehat{A}\)

\(\widehat{BIC}=180^0-90^0+\dfrac{1}{2}\cdot\widehat{A}=\dfrac{1}{2}\cdot\widehat{A}+90^0\)

8 tháng 7 2019

Tham khảo:Câu hỏi của Kaito1412_TV - Toán lớp 7 - Học toán với OnlineMath

Có bạn nài làm đc ko v

25 tháng 11 2018

a) I là giao điểm của 2 đường phân giác của tam giác ABC

=> I cũng là giao điểm của 3 đường phân giác của tam giác ABC 

hay áp dụng định lý của ba đường phân giác của tam giác thì I cách đều 3 cạnh

<=> ID = IE ( đpcm ).

b)\(\widebat{A}+\widebat{B}+\widebat{C}=180^o\)

\(\Leftrightarrow\widebat{B}+\widebat{C}=180^o-\widebat{A}\)

\(\Leftrightarrow\frac{\widebat{B}}{2}+\frac{\widebat{C}}{2}=90^o-\frac{\widebat{A}}{2}\)

\(\Leftrightarrow\widebat{BIC}=180^o-\left(90^o-\frac{\widebat{A}}{2}\right)=90^o+\frac{\widebat{BAC}}{2}\left(đpcm\right).\)

c) Áp dụng định lý Pytago:

IA2 = ID + AD2 

IB2 = ID2 + BD2 

=> IA2 + IB2 = 2ID2 +AD2 +BD2 ( đpcm ).

d) Chưa nghĩ ra.

Lưu ý: Làm hơi tắt.

d, Từ I kẻ đường thẳng vuông góc với BC cắt BC tại F.

Xét tam giác vuông DIB và FIB có BD = BF.

CM tương tự : CE = CF

BF + CF =BC => CE + BD = BC.

8 tháng 4 2018

help me

9 tháng 4 2018

a) Xét tam giác vuông ADB và tam giác vuông ACE có:

Góc A chung

AB = AC (gt)

\(\Rightarrow\Delta ABD=\Delta ACE\)   (Cạnh huyền - góc nhọn)

b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)

Xét tam giác vuông AEH và tam giác vuông ADH có:

Cạnh AH chung

AE = AD (cmt)

\(\Rightarrow\Delta AEH=\Delta ADH\)   (Cạnh huyền - cạnh góc vuông)

\(\Rightarrow HE=HD\)

c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.

Lại có AM cũng là đường cao nên AM đi qua H.

d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:

\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)   

Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)

Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)

\(=3EC^2+2EA^2+BC^2\).