Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi MH là đường cao kẻ từ M của tam giác MBC, AK là đường cao kẻ từ A của tam giác ABC.
Do MH vuông BC và AK vuông BC nên MH // AK
=> Theo Talet: \(\frac{ME}{AE}=\frac{MH}{AK}\)
Lại có: \(\frac{S_{MBC}}{S_{ABC}}=\frac{\frac{1}{2}.MH.BC}{\frac{1}{2}.AK.BC}=\frac{MH}{MK}\)
Tương tự ta có: \(\frac{MF}{BF}=\frac{S_{MAC}}{S_{ABC}};\frac{MD}{CD}=\frac{S_{MAB}}{S_{ABC}}\)
Cộng theo vế: \(\frac{ME}{AE}+\frac{MF}{BF}+\frac{MD}{CD}=\frac{S_{MBC}+S_{MCA}+S_{MAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
a, Trên AM lấy điểm E sao cho ME = MB
Có : góc BME = góc BCA = 60 độ
=> tam giác EMB đều => EB = MB và góc EMB = 60 độ
Góc EMB = 60 độ => góc EBC + góc CBM = 60 độ
Lại có : góc ABC = 60 độ nên góc ABE + góc EBC = 60 độ
=> góc ABE = góc CBM
=> tam giác AEB = tam giác CMB (c.g.c)
=> AE = CM
=> AM = AE + EM = CM+BM
b, Theo câu a có tam giác AEB = tam giác CMB
=> góc EAB = góc MCB
=> tam giác MDC đồng dạng tam giác MBA (g.g)
=> MC/MA = MD/MB
=> MD.MA=MB.MC
Có : MD/MB + MD/MC = MD.(1/MB + 1/MC) = MD.(MB+MC)/MB.MC = MD/MA/MB.MC = 1
a) Ta có \(AM=AC-MC=AC-MB=b-d\)
Xét tam giác vuông ABM, theo định lý Pi-ta-go ta có:
\(c^2+\left(b-d\right)^2=d^2\Leftrightarrow c^2+b^2-2bd+d^2=d^2\)
\(\Leftrightarrow c^2+b^2-2bd=0\)
Mà tam giác ABC vuông tại A nên \(b^2+c^2=a^2\)
\(\Rightarrow a^2=2bd\Rightarrow4bc=2bd\Rightarrow d=2c\left(đpcm\right)\)
b) Xét tam giác vuông ABM có \(BM=2BA\Rightarrow\widehat{ABM}=60^o\Rightarrow\widehat{AMB}=36^o\)
Xét tam giác cân MBC có \(\widehat{AMB}\) là góc ngoài tại đỉnh cân nên \(\widehat{AMB}=2\widehat{MBC}=2\widehat{MCB}\)
\(\Rightarrow\widehat{MCB}=\widehat{MBC}=\frac{30^o}{2}=15^o\)
Vậy nên \(\widehat{ABC}=\widehat{ABM}+\widehat{MBC}=60^o+15^o=75^o\)
\(\widehat{ACB}=\widehat{MCB}=15^o\)