Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có góc A+góc B+góc C=180 độ
=>góc A=180 độ-30 độ-20 độ=130 độ
Xét ΔABC có BC/sinA=AC/sinB=AB/sinC
=>AC/sin30=AB/sin20=30/sin130
=>\(AC\simeq19,58\left(cm\right);AB\simeq13,39\left(cm\right)\)
ΔAHB vuông tại H có sin B=AH/AB
=>AH/13,39=1/2
=>AH=6,695(cm)
b: Xét ΔABC có AD là phân giác
nên AB/AC=BD/DC
=>\(\dfrac{BD}{DC}=\dfrac{13.39}{19.58}\)
=>\(\dfrac{BD}{13.39}=\dfrac{CD}{19.58}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{13.39}=\dfrac{CD}{19.58}=\dfrac{BD+CD}{13.39+19.58}=\dfrac{30}{32.97}=\dfrac{1000}{1099}\)
=>\(BD\simeq12,18\left(cm\right);CD\simeq17,82\left(cm\right)\)
Sửa đề: ΔABC vuông tại A
tan B=AC/AB
=>tan 30=AC/AB=căn 3/3
Xét ΔABC vuông tại A có AD là đường cao
nên AB^2=BD*BC; AC^2=CD*CB
=>BD/CD=(AB/AC)^2=(3/căn 3)^2=3
góc B=90-40=50 độ
Xét ΔABC vuông tại A có
tan C=AB/AC
=>12/AC=tan 40
=>\(AC\simeq14,3\left(cm\right)\)
=>\(BC=\sqrt{14.3^2+12^2}\simeq18,67\left(cm\right)\)
Xét ΔABC có BD là phân giác
nên AD/AB=CD/BC
=>AD/12=CD/18,67
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{12}=\dfrac{CD}{18.67}=\dfrac{AD+CD}{12+18.67}=\dfrac{14.3}{30.67}\simeq0,47\)
=>\(AD\simeq5,64\left(cm\right);CD\simeq8,76\left(cm\right)\)
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=5^2-3^2=16\)
hay AC=4
Xét ΔBAC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
\(\Leftrightarrow\widehat{C}=37^0\)
b: Xét ΔABC có
BD là đường phân giác ứng với cạnh AC
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
hay \(\dfrac{AD}{3}=\dfrac{CD}{5}\)
mà AD+CD=4
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{1}{2}\)
Do đó: AD=1,5cm; CD=2,5cm
a) Từ A kẻ AE//BD cắt đường thẳng CB tại E
=> ^BAE=^DBA=^B/2=60* và ^ABE=60* (kề bù với ^B)
=> ∆ABE đều nên AB=BE=AE=6
Do BD//AE suy ra: BD/AE=CB/CE
mà CE=CB+BE=12+6=18cm
ta có BD/6=12/18 suy ra BD=12.6/18=4 (cm)
b) Xét ∆ABM có AB=BM =6cm (do BM=MC=BC/2)
nên ∆ABM cân tại B mà BD là đường phân giác nên cũng là đường cao
do đó BD vuông góc với AM.
Xét ΔABC có AD là phân giác
nên DB/DC=AB/AC