K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

a/ Gọi E là trung điểm của BC

Ta có: \(BC=2AB\left(gt\right)\)

\(\Rightarrow AB=\frac{1}{2}BC\) (1)

Lại có E là trung điểm của BC

\(\Rightarrow BE=EC=\frac{1}{2}BC\) (2)

Từ (1) và (2) \(\Rightarrow AB=BE=EC\)

Xét \(\Delta BDA\)\(\Delta BDE\) có:

BD chung

\(\widehat{B_1}=\widehat{B_2}\) (do BD là phân giác của \(\widehat{B}\))

AB=BE (cmt)

Suy ra: \(\Delta BDA=\Delta BDE\left(c.g.c\right)\)

Xét \(\Delta BED\)\(\Delta CED\) có:

\(\widehat{E_1}=\widehat{E_2}=90^0\) ( kề bù và \(\widehat{E_1}=90^0\))

DE chung

BE=EC (cmt)

Suy ra: \(\Delta BED=\Delta CED\left(c.g.c\right)\)

\(\Rightarrow DB=DC\) (hai cạnh tương ứng)

b/ Xét \(\Delta ABC\) có:

\(\widehat{B}+\widehat{C}=90^0\)

Mà: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}\) (Do \(\Delta BED=\Delta CED\)) và\(\widehat{B_1}=\widehat{B_2}\)

Suy ra: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}\). Mà: \(\widehat{B_1}+\widehat{B_2}+\widehat{C}=90^0\)

Suy ra: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}=90^0\div3=30^0\)

Nên: \(\widehat{B}=\widehat{B_1}+\widehat{B_2}=30^0+30^0=60^0\)

Lưu ý: Hình vẽ minh họa phía dưới
A D C B E 1 2 1 2 1 2 3

8 tháng 1 2020

hình vẽ : 

B A C D E 1 2

giải :

a, xét \(\Delta ABC\) và \(\Delta EBD\)có :

AB = EB ( do BC = 2AB )

\(\widehat{B_1}=\widehat{B_2}\) ( gt )

BD cạnh chung 

\(\Rightarrow\Delta ABC=\Delta EBD\left(c.g.c\right)\)

do đó \(\widehat{ADB}=\widehat{EDB}\)

=> DB là tia phân giác của \(\widehat{ADE}\)

b, xét tam giác ABD và tam giác EBD có :

  AB = EB ( gt )

  \(\widehat{B_1}=\widehat{B_2}\)

 BD cạnh chung

=> tam giác ABD = tam giác EBD ( c.g.c )

=> \(\widehat{DEB}=\widehat{DAB}=90^0\) Mà \(\widehat{DEB}+\widehat{DEC}=180^0\)

\(\Rightarrow\widehat{AEC}=90^0\)

Xét tam giác EDB và EDC có :

EB = EC ( gt )

\(\widehat{DEB}=\widehat{DEC}=90^0\)

ED chung

=> tam giác EDB = tam giác EDC ( c.g.c )

=> DB = DC Và \(\widehat{C}=\widehat{B}_2\)

c, ta có : \(\widehat{B_1}=\widehat{B}_2\) mà \(\widehat{B_2}=\widehat{C}\) Do đó \(\widehat{B}+\widehat{B_1}+\widehat{B_2}=2\widehat{C}\)

Trong tam giác vuông ABC thì  \(\widehat{B}+\widehat{C}=90^0\) Hay \(3\widehat{C}=90^0\)

\(\Rightarrow\widehat{C}=30^0;\widehat{B}=30^0.2=60^0\)

  

16 tháng 12 2018

la 360

20 tháng 12 2018

bn có thể giải rõ ra ko

16 tháng 9 2021

câu a>Ta có :BC=2AB mà E là trung điểm của BC suy ra BE=AB

Xét tam giác ABD và tam giác EBD có:

AB=EB(gt)

góc ABD=góc EBD(vì BD là phân giác góc ABC

Cạnh BD chung

Từ đó suy ra tam giác ABD= tam giác EBD

Suy ra góc ADB=góc EDB( 2 góc t/ ư)

Suy ra DB là phân giác góc ADE

16 tháng 9 2021

b) ΔABD=ΔEBD(c-g-c) nên ˆDEB=ˆDAB=90o mà ˆDEB+ˆDEC=180o

Do đó ˆAEC=90o. Xét ΔEDB và ΔEDC ta có:

EB=EC;

ˆDEB=ˆDAB=90o;

ED chung

Do đó ΔEDB=ΔEDC(c-g-c)

Vậy DB=CD(hai cạnh tương ứng)

ˆC=ˆDBC(hai góc tương ứng)

c)Ta có:ˆABD=ˆEBD mà ˆEBD=ˆC .Do đó ˆB+ˆABD+ˆEBD=2ˆC

Trong tam giác vuông ABC thì ˆB+ˆC=99o hay 3ˆC=90o

⇒ˆC=30o,ˆB=30o.2=60o