K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

A B C H M K 1 1 1 1

HK \(⊥\)AB ( gt ); AC \(⊥\)AB ( do tam giác ABC vuông tại A )

=> HK // AC ( t/c 1 quan hệ từ \(⊥\)đến // )

=> góc H1 = góc A1 ( so le trong )

Xét \(\Delta\) AHK và \(\Delta\) HAM có:

góc K1 = góc M1 = 90o ( HK \(⊥\)AB; HM \(⊥\)AC )

góc H1 = góc A1 ( cmt )

cạnh AH chung

=>  \(\Delta\) AHK = \(\Delta\) HAM ( cạnh huyền. góc nhọn ) ( đpcm )

Mình nghĩ là đề bài của bạn thiếu giả thiết HM \(⊥\)AC nên bài làm của mình có bổ sung nhé.

6 tháng 5 2023

a, Xét tam giác ABH và tam giác ACH có:

góc ABH = góc ACH ( tam giác ABC cân tại A)

AH chung

góc BAH = góc CAH ( đường phân giác AH)

=> tam giác ABH = tam giác ACH(g.c.g)

b,Xét tam giác AKH và tam giác AIH có:

góc KAH = góc IAH (đường phân giác AH)

    AH chung

góc HKA = góc HIA = 90 độ

=> tam giác AKH = tam giác AIH(g.c.g)

=> HK = HI ( 2 cạnh tương ứng )

Vì AH là đường phân giác trong tam giác ABC cân tại A

=> AH là đường cao của tam giác ABC => AH vuông với BC

=> AH là đường trung tuyến của tam giác ABC=>BH=CH

Xét tam giác BHK và tam giác CHI có:

góc HBK = góc HCI ( tam giác ABC cân tại A)

  KH = IH( chứng minh trên )

góc BKH = góc CIH = 90 độ

=>tam giác BHK = tam giác CHI(g.c.g)

=>BK=CI(2 cạnh tương ứng)

c,chứng minh j kia bạn 

 

6 tháng 5 2023

c là chứng minh 1/2(KM+NI)<AM

 

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

Do đó: ΔABH=ΔACH

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

b: Xét ΔEAH vuông tại E và ΔFAH vuông tại F có

AH chung

\(\widehat{EAH}=\widehat{FAH}\)

Do đó: ΔEAH=ΔFAH

Suy ra: HE=HF

hay ΔHEF cân tại H

c: Xét ΔACK và ΔABK có

AC=AB

\(\widehat{CAK}=\widehat{BAK}\)

AK chung

Do đó: ΔACK=ΔABK

Suy ra: \(\widehat{ACK}=\widehat{ABK}=90^0\)

=>BK\(\perp\)AB

hay BK//EH

27 tháng 2 2022

em cảm ơn ạ

 

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HDa) Chứng minh tam giác ABD đềub) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HDa) Chứng minh...
Đọc tiếp

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1/AB^2+1/AC^2=1/AH^2

 

0

a) Xét ΔBHC vuông tại H và ΔCKB vuông tại K có

CB chung

\(\widehat{BCH}=\widehat{CBK}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)

b) Ta có: ΔBHC=ΔCKB(cmt)

nên HC=KB(hai cạnh tương ứng)

Ta có: AK+KB=AB(K nằm giữa A và B)

AH+HC=AC(H nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và KB=HC(cmt)

nên AK=AH

Xét ΔAKH có AK=AH(cmt)

nên ΔAKH cân tại A(Định nghĩa tam giác cân)

c) Ta có: ΔAKH cân tại A(cmt)

nên \(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAKH cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)

mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên HK//BC(Dấu hiệu nhận biết hai đường thẳng song song)

d) Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)

nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)

hay \(\widehat{KBO}=\widehat{HCO}\)

Xét ΔKBO vuông tại K và ΔHCO vuông tại H có

KB=HC(cmt)

\(\widehat{KBO}=\widehat{HCO}\)(cmt)

Do đó: ΔKBO=ΔHCO(cạnh góc vuông-góc nhọn kề)

nên OB=OC(hai cạnh tương ứng)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OB=OC(cmt)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (3), (4) và (5) suy ra A,O,M thẳng hàng(đpcm)

4 tháng 2 2021

tham khảo nha