Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:
a: Xét ΔOHA vuông tại A và ΔOHB vuông tại B có
OH chung
\(\widehat{AOH}=\widehat{BOH}\)
Do đó: ΔOHA=ΔOHB
Suy ra: HA=HB
hay ΔHAB cân tại H
b: Xét ΔOAB có
OH là đường cao
AD là đường cao
OH cắt AD tại C
Do đó: C là trực tâm của ΔOAB
Suy ra: BC\(\perp\)Ox
c: \(\widehat{HOA}=\dfrac{60^0}{2}=30^0\)
Xét ΔOHA vuông tại A có
\(\cos HOA=\dfrac{OA}{OH}\)
\(\Leftrightarrow OA=\dfrac{\sqrt{3}}{2}\cdot4=2\sqrt{3}\left(cm\right)\)

\(sin^3A.sin\left(B-C\right)=sin^2A.sinA.sin\left(B-C\right)\)
\(=sin^2A.sin\left(B+C\right).sin\left(B-C\right)=-\frac{1}{2}sin^2A\left(cos2B-cos2C\right)\)
\(=-\frac{1}{2}sin^2A\left(1-2sin^2B-1+2sin^2C\right)=sin^2A.sin^2B-sin^2A.sin^2C\)

Ta có : A+B+C= 180
=>sin(A+B)/2 = sin(180/2 - C/2) = cosC/2
ttcó: sinC/2 = cos(A+B)/2
=> sA+sB+sC =2cosC/2*cos(A-B)/2 + 2cos(A+B)/2*cosC/2
=2cosC/2
=4cosA/2cosB/2cosC/2

1: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
2: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
\(\widehat{DCA}\) chung
Do đó: ΔCDA\(\sim\)ΔCEB
Suy ra: CD/CE=CA/CB
hay \(CD\cdot CB=CA\cdot CE\)

a: Xét ΔAMB va ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét tứ giác ABCE có
D la trung điểm của AC
D là trung điểm của BE
Do đó:ABCE là hình bình hành
SUy ra: AE//BC

\(\widehat{ABC}=180^0-\left(30^0+75^0\right)=75^0\)
\(\Rightarrow\Delta ABC\) cân tại A \(\Rightarrow AB=AC=6\)
\(S_{ABC}=\dfrac{1}{2}AB.AC.sinA=\dfrac{1}{2}.6.6.sin30^0=9\)
Kẻ đường cao BH của tam giác ABC. Ta có \(BH=AB.sinA\) (liên hệ giữa góc và cạnh trong tam giác vuông)
Mặt khác \(S_{ABC}=\dfrac{1}{2}AC.BH\) nên \(S_{ABC}=\dfrac{1}{2}AB.AC.sinA\)
You can learn the difficult concept to understand from Solvemate. This is a education service for using technology to adapt in order to create mathematical problems based on the learning needs of students.
Math mate in your pocket. https://intro.solve-mate.com/