Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì BD là phân giác của \(\widehat{ABC}\) nên \(\widehat{ABD}=\widehat{DBC}=\frac{1}{2}\widehat{ABC}\)
Lại có \(\widehat{EBD}=\widehat{EDB}\)(gt)
=> \(\widehat{EDB}=\widehat{DBC}\)
Mà 2 góc ở vị trí so le trong nên ED//BC
Chúc bạn làm bài tốt!!!!
b) Vì ED//BC nên \(\widehat{AED}=\widehat{ABC}\)(đồng vị) (1)
Vì EF//BD nên \(\widehat{AEF}=\widehat{ABD}\)(đồng vị) (2)
Lại có \(\widehat{ABD}=\frac{1}{2}\widehat{ABC}\)(cmt) (3)
Từ (1),(2) và (3) suy ra \(\widehat{AEF}=\frac{1}{2}\widehat{AED}\)
=> EF là tia phân giác của góc AED
Chúc bạn làm bài tốt !!!!!!!!!!
a: Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(1)
Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHD cân tại A
mà AB là đường cao
nên AB là tia phân giác của góc HAD(2)
Từ (1) và (2) suy ra \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}=2\cdot\left(\widehat{CAH}+\widehat{BAH}\right)=180^0\)
hay E,A,D thẳng hàng
b: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//DE
c: Xét ΔAHB và ΔADB có
AH=AD
\(\widehat{HAB}=\widehat{DAB}\)
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: \(\widehat{AHB}=\widehat{ADB}=90^0\)
hay BD\(\perp\)ED(3)
Xét ΔAHC và ΔAEC có
AH=AE
\(\widehat{HAC}=\widehat{EAC}\)
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: \(\widehat{AHC}=\widehat{AEC}=90^0\)
hay CE\(\perp\)DE(4)
Từ (3) và (4) suy ra BD//CE
a: Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(1)
Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHD cân tại A
mà AB là đường cao
nên AB là tia phân giác của góc HAD(2)
Từ (1) và (2) suy ra \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}=2\cdot\left(\widehat{CAH}+\widehat{BAH}\right)=180^0\)
hay E,A,D thẳng hàng
b: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//DE
c: Xét ΔAHB và ΔADB có
AH=AD
\(\widehat{HAB}=\widehat{DAB}\)
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: \(\widehat{AHB}=\widehat{ADB}=90^0\)
hay BD\(\perp\)ED(3)
Xét ΔAHC và ΔAEC có
AH=AE
\(\widehat{HAC}=\widehat{EAC}\)
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: \(\widehat{AHC}=\widehat{AEC}=90^0\)
hay CE\(\perp\)DE(4)
Từ (3) và (4) suy ra BD//CE