Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác BEC có:
BM = MC ( vì AM là trung tuyến hay M là trung điểm BC )
FM //EC ( vì đường thẳng qua M và .// với EC cắt AB tại F )
=> BF = FE ( theo đường trung bình trong 1 tam giác )(đpcm)
b, tương tự, ta ap dụng với tam giác AFM có:
EI // FM ( vì EC // FM )
IA = IM ( I là trung điểm của AM )
=> E là trung điểm FA hay AE = EF
Theo câu a, ta được ; AE = EF = FB
Ta thấy: AB = AE + EF + FB = 3 AE hay AE = 1/3 AB (đpcm)
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a: Xét ΔBEC có
M là trung điểm của BC
F là trung điểm của BE
Do đó: MF là đường trung bình của ΔBEC
Suy ra: MF//EC
hay EK//FM
b: Xét ΔAFM có
K là trung điểm của AM
KE//FM
Do đó: E là trung điểm của FA
Suy ra: EA=FE=FB