Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: BB’ ⊥ d (gt)
CC’ ⊥ d (gt)
Suy ra: BB’ // CC’
Tứ giác BB’CC’ là hình thang
Kẻ MM’ ⊥ d
⇒ MM’ // BB’ // CC’
Nên MM’ là đường trung bình của hình thang BB’CC’
⇒MM′=BB′+CC′2(1)⇒MM′=BB′+CC′2(1)
Xét hai tam giác vuông AA’O và MM’O:
ˆOA′A=ˆOM′MOA′A^=OM′M^
AO = MO (gt)
ˆAOA′=ˆMOM′AOA′^=MOM′^ (đối đỉnh)
Do đó: ∆ AA’O = ∆ MM’O (cạnh huyền, góc nhọn)
⇒ AA’ = MM’ (2)
Từ (1) và (2) suy ra: AA′=BB′+CC′2AA′=BB′+CC′/2.
Ta có: BB' ⊥ d (gt)
CC' ⊥ d (gt)
Suy ra: BB'// CC'
Tứ giác BB'C'C là hình thang
Kẻ MM' ⊥ d ⇒ MM' // BB' // CC'
Lại có M là trung điểm của BC nên M' là trung điểm của B’C’
⇒ MM' là đường trung bình của hình thang BB'C'C
⇒ MM' = (BB' + CC') / 2 (1)
* Xét hai tam giác vuông AA'O và MM'O:
∠ (AA'O) = ∠ (MM' O) = 90 0
AO=MO (gt)
∠ (AOA') = ∠ (MOM' ) (2 góc đối đỉnh)
Do đó: ∆ AA'O = ∆ MM'O (cạnh huyền, cạnh góc nhọn)
⇒AA' = MM' (2)
Từ (1) và (2) suy ra: AA' = (BB' + CC') / 2
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
bạn vẽ hình ra thì đọc mới hiểu nha !
a) Ta có : BB' vuông góc với d ( giả thiết ) }
MM' vuông góc với d ( giả thiết ) } => BB' // MM' // CC' ( từ vuông góc đến // )
CC' vuông góc với d ( giả thiết ) }
Xét hình thang BB'C'C ( BB' // C'C - chứng minh trên ) có :
M là trung điểm BC ( AM là trung tuyến - giả thiêt ) }
MM' // BB' ; MM' // CC' ( chứng minh trên ) } => M' là trung điểm BB'CC' ( định lí )
Xét hình thang BB'C'C có :
M là trung điểm BC ( AM là trung tuyến ) }
M' là trung điểm B'C' ( chứng minh trên ) } => MM' là đường trung bình của hình thang BB'C'C ( định lí )
=> MM' = BB' + CC' / 2 ( định lí )
ĐÓ MÌNH CHỈ BIẾT LÀM CÂU A) THÔI, XL BẠN NHA !!!
LẤy K sao cho K là TD BB'
BB" // CC" ( cùng vuông góc với d )
=> B'BCC' là HT
HT B'BCC' có BM = MC ( m là trung điểm)
KB' = KC' ( K là tđ)
=> KM là đg tb => KM = 1/2 ( BB' + CC") => 2KM = BB' + CC' (1)
và KM // BB ; BB" vuông góc với d => KM vuông góc với d
Xetsa tam giác AOA' vuông tại A' và tam giác KOM vuông tại K có
OA = OM ( O là tđ)
AOA' = MOA ( đối đỉnh)
=> tam giác AOA' = KOM ( cạnh huyề - góc nhọn)
=> AA' = KM ( hai cạnh tương ứng ) (2)
Từ (1) và (2) => ĐPCM