K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2022

b:

Vì D nằm trên đường trung trực của AB

nên DA=DB

=>DC=DE

Xét ΔDAB và ΔDEC có

DA/DE=DB/DC

góc ADB=góc EDC

Do đó: ΔDAB đồng dạng với ΔDEC

=>góc DAB=góc DEC

=>AB//EC

12 tháng 1 2017

Rõ ràng góc ABC>90 ,trung trực AB ko cắt tia BC mà cắt tia đối của tia BC(trái gt),nếu góc ABC=90=>trung trực AB//BC,vậy theo bài ra góc ABC<90, xét 2 trường hợp :
1)góc ABC<góc BAC=>trung trực AB cắt đoạn BC tại D
a) Xét ..........

AB chung
tam giác ADB cân tại D=>góc DAB=góc DBA
AE=BC(gt)
=>tam giác BAE=tam giácABC
b) DC=BC-BD=AE-AD=DE
=>tam giác DEC cân tại D

=>góc DCE= góc ADC/2=gócABC
=>AB//CE(cac goc o vi tri so le trong=nhau)
2)gócABC>gócBAC=>trung trực AB cắt tia BC kéo dài
a)c/m như trên
b)DC=DB-BC=DA-AE=ED=>tam giác EDC cân tại D
=>góc ECD=góc ABC(cac goc o vi tri dong vi)

=> AB//CE ( đpcm )

12 tháng 1 2018

sao ko có hình vẽ

26 tháng 4 2020

OC CHO BA LA GU

DU MA

23 tháng 1 2022

Answer:

Bài 1:

Vì AB = AC nên tam giác ABC cân tại A

=> Góc ABC = góc ACB = (180 độ - góc BAC) : 2 = 30 độ

Ta gọi DF là trung trực của AC

=> DF vuông góc AC = F; FC = FA

Mà DF là trung trực của AC

=> Góc ADA = 2 góc CDF = 2 . (180 độ - góc DCF - góc CFD) = 120 độ

Xét tam giác ACE và tam giác BAD:

BD = AE

AC = AB

Góc EAC = góc DBA = 30 độ

=> Tam giác ACE = tam giác BAD (c.g.c)

=> Góc CED = góc ADB = góc EDC = 180 độ - góc CDA = 60 độ

Bài 2:

Có: IK là trung trực của BC

=> IB = IC

Tương tự ID = IA mà AB = CD

=> Tam giác IAB = tam giác IDC (c.c.c)

=> Góc IAB = góc IDA = góc IAC

=> AI là tia phân giác của góc BAD

Mà AI là tia phân giác của góc A

IE vuông góc AB; IH vuông góc AC

=> IE = IH

\(\Rightarrow BE^2=IB^2-IE^2=IC^2-IH^2=HC^2\)

=> BE = HC

Mà IE = IH; góc IEA = góc IHA = 90 độ; góc EAI = góc IAH

=> Tam giác AEI = tam giác AHI (g.c.g)

=> AE = AH mà IE = IH

=> IA là trung trực của EH

Có: CF song song AB nên góc FHC = góc AHE = góc AEH = góc HFC

=> Tam giác CHF cân ở C

=> CF = CH

=> CF = BE

Mà KB = KC; góc EBK = góc KCF

=> Tam giác BKE = tam giác CKF (c.g.c)

=> Góc BKE = góc FKC

=> E, F, K thẳng hàng

9 tháng 3 2017

Cân tại A nha mọi người ơi!

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)