Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác FHDB có
\(\widehat{HFB}+\widehat{HDB}=180^0\)
Do đó: FHDB là tứ giác nội tiếp
Suy ra: \(\widehat{FDH}=\widehat{FBH}=\widehat{ABE}\left(1\right)\)
Xét tứ giác EHDC có
\(\widehat{HEC}+\widehat{HDC}=180^0\)
Do đó: EHDC là tứ giác nội tiếp
Suy ra: \(\widehat{EDH}=\widehat{ECH}=\widehat{ACF}\left(2\right)\)
Ta có: \(\widehat{ABE}+\widehat{BAC}=90^0\)
\(\widehat{ACF}+\widehat{BAC}=90^0\)
Do đó: \(\widehat{ABE}=\widehat{ACF}\left(3\right)\)
Từ (1), (2) và (3) suy ra \(\widehat{FDA}=\widehat{EDA}\)
hay DA là tia phân giác của góc FDE
Lời giải:
\(\frac{AM}{AD}+\frac{BN}{BE}+\frac{CS}{CF}=4\Leftrightarrow \frac{DM}{AD}+\frac{EN}{BE}+\frac{FS}{CF}=1\)
\(\Leftrightarrow \frac{HD}{AD}+\frac{EH}{BE}+\frac{HF}{CF}=1\) \((\star)\)
Gọi diện tích của các tam giác \(AFH, BFH, BHD, DHC, EHC, AEH\) lần lượt là \(a,b,c,d,e,f\)
Ta có :
\(\left\{\begin{matrix} \frac{DH}{AD}=\frac{S_{BHD}}{S_{BAD}}=\frac{S_{CHD}}{S_{ADC}}\\ \frac{EH}{BE}=\frac{S_{AEH}}{S_{ABE}}=\frac{S_{CHE}}{S_{EBC}}\\ \frac{HF}{CF}=\frac{S_{BFH}}{S_{BFC}}=\frac{S_{FAH}}{S_{FAC}}\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} \frac{DH}{AD}=\frac{c}{a+b+c}=\frac{d}{e+f+d}=\frac{c+d}{a+b+c+d+e+f}\\ \frac{EH}{BE}=\frac{f}{a+b+f}=\frac{e}{e+c+d}=\frac{e+f}{a+b+c+d+e+f}\\ \frac{HF}{CF}=\frac{b}{b+c+d}=\frac{a}{a+f+e}=\frac{a+b}{a+b+c+d+e+f}\end{matrix}\right.\)
\(\Rightarrow \frac{DH}{AD}+\frac{EH}{BE}+\frac{HF}{CF}=1\)
Ta có \((\star)\) nên phép cm hoàn tất.
a b c m d h e
câu a
tam giác abc cân a
=> ab = ac (tính chất)
tam giác abe và tam giác acd có
chung góc a
ab=ac
ad=ae
=> tam giác abe = tam giác acd (cgc)
câu b
từ câu a
=> góc e = góc d
mà góc e = 90 độ
=> góc d = 90 độ
=> cd là đưòng cao
tam giác abc có đưòng cao be và cd giao tại h
=> h là trực tâm
câu c
từ câu b
=> ah là đường cao
=> ah đồng thời là đường trung tuyến
mà am là đường trung tuyến
=> ah trùng am
=> a,m,h thẳng hàng
câu d
tam giác cbd vuông tại d có dm là đưòng trung tuyến ứng với cạnh huyền bc
\(dm=\dfrac{bc}{2}\\ =>bc=2.dm\)
chúc may mắn :)
Lời giải:
Kẻ $Ax$ là tiếp tuyến của $(O)$
Khi đó: $Ax\perp OA(1)$
Mặt khác:
Dễ thấy tứ giác $BFEC$ có $\widehat{BFC}=\widehat{BEC}=90^0$ và cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp.
$\Rightarrow \widehat{AFE}=\widehat{ACB}$
Mà: $\widehat{ACB}=\widehat{xAB}$ (tính chất góc tạo bởi tiếp tuyến và dây cung thì bằng góc nt chắn cung đó)
Suy ra $\widehat{AFE}=\widehat{xAB}$. Mà 2 góc này ở vị trí so le trong nên $Ax\parallel EF(2)$
Từ $(1);(2)\Rightarrow OA\perp EF$ (đpcm)
xét tam giác abe va acf
co ;goc f=goc e =90
goc a chung
2 tam giuac dong dang
A B C D H E F
a) Xét ΔABE và ΔACE có:
\(\widehat{AEB}=\widehat{AFC}\) \(=90^0\)
\(\widehat{CAB}:chung\)
=> ΔABE∼ΔACE (g.g)
b) Xét ΔFHB và ΔEHC có:
\(\widehat{HFB}=\widehat{HEC}\) \(=90^0\)
\(\widehat{FHB}=\widehat{EHC}\) (2 góc đối đỉnh)
=> ΔFHB∼ΔEHC (g.g)
=> \(\frac{HF}{HE}=\frac{HB}{HC}\Leftrightarrow HF.HC=HB.HE\) (đpcm)
c) Theo câu a) ta có: ΔABE∼ΔACF
=> \(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét ΔBAC và ΔEAF có:
\(\widehat{BAC}:chung\)
\(\frac{AB}{AC}=\frac{AE}{AF}\) (cmtrn)
=> ΔBAC∼ΔEAF (c.g.c)
=> \(\widehat{AEF}=\widehat{ABC}\) (2 góc tương ứng)
Câu hỏi của Phạm Ngọc Thạch - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo.