Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
góc B = góc H1 vì cùng phụ với góc BAA' nên góc B= góc H2
tanB.tanC = tanH.tanC = \(\dfrac{A'C}{A'H}.\dfrac{AA'}{A'C}=\dfrac{AA'}{A'H}=\dfrac{A'H+AH}{A'H}=1+\dfrac{AH}{A'H}=1+k\)
A B C H O D E I J G K A' U X Y Z M N V S T L
Bổ sung đề: D là điểm bất kì nằm trên (O).
Gọi (U) là đường tròn ngoại tiếp \(\Delta\)DAH, kẻ đường kính AL của (U), gọi DA' cắt BC tại S.
Đường thẳng AI cắt (BHC) tại Y, Z đối xứng với A qua E. Đường tròn (A'YZ) tâm V cắt (BHC) tại X khác Y.
Dễ thấy bốn điểm O,I,E,S đồng viên và OS là đường kính của (OEI)
Vì \(V_{\left(A',2\right)}:\left(OEI\right)\rightarrow\left(ADH\right)\)nên S là trung điểm của A'L
Ta thấy (ABC) và (BHC) đối xứng nhau qua trung điểm cạnh BC nên A đối xứng với Y qua I
Từ đó tứ giác AA'YH là hình bình hành, AA'ZD cũng là hình bình hành. Suy ra (ADH) = (A'ZY)
Hay \(\Delta\)AUH = \(\Delta\)A'VY, UL // A'V. Đồng thời có S là trung điểm A'L, vậy thì S cũng là trung điểm UV
Từ hai tam giác AUH và A'VY bằng nhau có các cặp cạnh song song, suy ra UV = 2SV = HY
Gọi T là điểm đối xứng với H qua S. Khi đó SV là đường trung bình của \(\Delta\)HTY, suy ra V là trung điểm YT
Hay YT là đường kính của (V). Cũng dễ có YH là đường kính của (BHC). Suy ra H,S,T,X thẳng hàng (^YXT = ^YXH = 900)
Ta có \(\overline{SH}.\overline{SX}=\overline{SB}.\overline{SC}=\overline{SA'}.\overline{SD}\)nên bốn điểm D,H,A',X đồng viên (1)
Mặt khác gọi J' là trung điểm của AX thì \(V_{\left(A,2\right)}:\left(OJIE\right)\rightarrow\left(A'XYZ\right)\)nên J' thuộc (OEI)
Tương tự, với M,N là trung điểm AB,AC thì \(V_{\left(A,2\right)}:\left(MIJN\right)\rightarrow\left(BYXC\right)\)nên J' thuộc (Euler)
Từ đó J trùng J'. Suy ra \(V_{\left(A,2\right)}:G\rightarrow D;K\rightarrow H;O\rightarrow A';J\rightarrow X\) (2)
Từ (1) và (2) suy ra bốn điểm G,K,O,J đồng viên (đpcm).
Hình hơi rối, bạn tự vẽ hình nhé!
Lấy điểm S đối xứng với H qua BC, R là giao điểm của KC và MB.
Vì \(ME=MA=MH\)( tính chất trung tuyến )
Kết hợp tính đối xứng của điểm S ta có:
\(\widehat{MSB}=\widehat{BHD}=\widehat{MHE}=\widehat{MEB}\)
=> Tứ giác MESB nội tiếp
\(\Rightarrow\widehat{RBE}=\widehat{MSE}\left(1\right)\)
Lại có: \(\widehat{KSC}=\widehat{CHD}=\widehat{AHF}=\widehat{AEK}\)
Nên tứ giác KSCE cũng nội tiếp
=> \(\widehat{MSE}=\widehat{RCE}\left(2\right)\)
Từ ( 1 ) và ( 2 ) =>\(\widehat{RBE}=\widehat{RCE}\)
Nên tứ giác RBCE nội tiếp
=> \(\widehat{BRC}=\widehat{BEC}=90^o\)
Trong \(\Delta MBC\)có: \(MK\perp BC\)và \(CK\perp MB\)
Nên K là trực tâm của \(\Delta BMC\)
A B C D I R H K J M N O
Gọi M, N lần lượt là chân đường cao hạ từ B,C xuống AC,AB
Ta có \(DH.DA=DB.DC\)(1)
Để chứng minh K là trực tâm tam giác IBC ta chứng minh \(DK.DJ=DB.DC\)hay \(DK.DJ=DH.DA\)
Ta có NC,NA lần lượt là phân giác trong và phân giác ngoài của \(\widehat{MND}\)nên
\(\frac{HK}{HD}=\frac{NK}{ND}=\frac{AK}{AH}\)
\(\Rightarrow AK.HD=AD.HK\)
\(\Leftrightarrow HD\left(AD-DK\right)=AD\left(DK-DH\right)\)
\(\Leftrightarrow2.AD.DH=DK\left(DA+DH\right)\)
\(\Leftrightarrow2.AD.DH=2.DK.DJ\)
\(\Rightarrow AD.DH=DK.DJ\left(2\right)\)
Từ (1) và (2) ta có\(DK.DJ=DH.DA\)
=> K là trực tâm của tam giác IBC