Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔABC đồng dạng với ΔDEF
=>AB/DE=BC/EF=AC/DF
=>7/EF=5/DF=3/6=1/2
=>EF=14cm; DF=10cm
ΔABC đồng dạng với ΔDEF
=>AB/DE=BC/EF=AC/DF
=>7/EF=5/DF=3/6=1/2
=>EF=14cm; DF=10cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AB}{3}=\dfrac{AC}{5}=\dfrac{BC}{7}=\dfrac{AB+BC+CA}{3+5+7}=\dfrac{20}{15}=\dfrac{4}{3}\)
Do đó: AB=4(cm); AC=20/3(cm); BC=28/3(cm)
D E F A B C
ta có:\(\dfrac{DE}{AB}=\dfrac{DF}{AC}=\dfrac{EF}{BC}\)
\(\Leftrightarrow\dfrac{3}{AB}=\dfrac{5}{AC}=\dfrac{7}{BC}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{3+5+7}{AB+AC+BC}=\dfrac{15}{20}=\dfrac{3}{4}\)
<=>\(\dfrac{AB+AC+BC}{DE+EF+DF}=\dfrac{4}{3}\)
<=>AB=\(\dfrac{4}{3}.DE=\dfrac{4}{3}.3=4\)
AC=\(\dfrac{4}{3}.DF=\dfrac{4}{3}.5=\dfrac{20}{3}\)
BC=\(\dfrac{4}{3}.EF=\dfrac{4}{3}.7=\dfrac{28}{3}\)
VẬY...
A B C D E F 5 7 8 12 45 55
Giải
Vì\(\Delta ABC~\Delta DEF\) nên ta có:
\(\widehat{D}=\widehat{A}=45^o\)
\(\widehat{E}=\widehat{B}=55^o\)
\(\widehat{F}=\widehat{C}=\left(180^o-45^o-55^o\right)=80^o\)
Xét\(\Delta ABC~\Delta DEF\) có:
\(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}=\frac{2}{3}\)
\(\Rightarrow DE=\frac{AB.3}{2}=7,5\)
\(DF=\frac{AC.3}{2}=10,5\)
#hoktot<3#
a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có
AB/DE=AC/DF
Do đó: ΔABC\(\sim\)ΔDEF
b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)
ΔDEF đồng dạng với ΔMNP
=>\(\dfrac{DE}{MN}=\dfrac{EF}{NP}=\dfrac{DF}{MP}\)
=>\(\dfrac{MN}{DE}=\dfrac{NP}{EF}=\dfrac{MP}{DF}\)
=>\(\dfrac{MN}{4}=\dfrac{NP}{7}=\dfrac{MP}{8}\)
Chu vi tam giác MNP bằng 38cm nên MN+NP+MP=38
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{MN}{4}=\dfrac{NP}{7}=\dfrac{MP}{8}=\dfrac{MN+NP+MP}{4+7+8}=\dfrac{38}{19}=2\)
=>\(MN=4\cdot2=8\left(cm\right);NP=7\cdot2=14\left(cm\right);MP=8\cdot2=16\left(cm\right)\)
6.)
Khi 2 tam giác đồng dạng với nhau thì cạnh nhỏ nhất của tam giác này sẽ tương ứng với cạnh nhỏ nhất của tam giác kia.
Theo đề:\(A'B'\)=4,5
Ta có:\(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)
\(\Rightarrow\)\(\frac{4,5}{3}=\frac{B'C'}{5}=\frac{C'A'}{7}\)
\(\Rightarrow\)\(B'C'=7,5cm,C'A'=10,5cm\)