K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2022

a: Xét ΔABC có MN//BC

nên AM/MB=AN/NC

=>5/NC=3/2

=>NC=5:3/2=10/3cm

=>AC=5+10/3=25/3cm

Vì MN//BC

nên MN/BC=AM/AB

=>MN/8=3/5

=>MN=4,8cm

b: Xét ΔABC có MN//BC

nên MN/BC=AM/AB

=>6/BC=3/11

=>BC=22(cm)

c: Xét ΔABC có MN//BC

nên 5/BC=AM/AB=1/7

=>BC=35cm

BM=AB-AM=2cm

Xét ΔABC có MN//BC

nên AM/MB=AN/NC

=>3/NC=2

hay NC=1,5(cm)

=>CA=4,5(cm)

\(BC=\sqrt{6^2+4.5^2}=7.5\left(cm\right)\)

a: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

b: MN//BC

=>AM/AB=MN/BC

=>MN/7,5=2/3

=>MN=5cm

12 tháng 3 2023

a) Do MN//BC nên theo hệ quả của ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{MN}{BC}\)

\(\Rightarrow\) \(\dfrac{2}{4}\) = \(\dfrac{MN}{6}\)\(\Rightarrow\) MN = \(\dfrac{2\times6}{4}\)\(\Rightarrow\) MN = 3 cm

b) Do MN//BC nên theo ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{AN}{AC}\)

\(\Rightarrow\)\(\dfrac{12}{15}\)=\(\dfrac{AN}{18}\)\(\Rightarrow\) AN = \(\dfrac{12\times18}{15}\) = 14,4 cm

29 tháng 2 2020

:V chụp xong không gửi được cái phần kia nên mình chép ra vậy hình bạn tự vẽ nhé v

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Xét tam giác ABC có MN//BC (gt)

\(\Rightarrow\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)( hệ quả của định lý Ta-let)

\(\Rightarrow\frac{3}{4}=\frac{AN}{8}=\frac{MN}{10}\)

\(\Rightarrow\hept{\begin{cases}AN=6\left(cm\right)\\MN=7,5\left(cm\right)\end{cases}}\)

b)Vì MI//AC (gt)

\(\Rightarrow MI//AK\left(K\in AB\right)\)

Vì IK//AB(gt)

\(\Rightarrow IK//AM\left(M\in AB\right)\)

Ta có: \(\hept{\begin{cases}MI//AK\left(cmt\right)\\IK//AM\left(cmt\right)\end{cases}\Rightarrow MI=AK}\)( tc cặp đoạn chắn)

Ta có: AM+MB=AB

\(\Rightarrow MB=1,5\left(cm\right)\)

Xét tam giác ABC có MI//AB(gt)

29 tháng 2 2020

Cho biểu thức B=\(\frac{2x+1}{x^2-1}\); A= \(\frac{3x+1}{x^2-1}\)--\(\frac{x}{x-1}\)+\(\frac{x-1}{x+1}\) (x khác +,- 1; x khác \(\frac{-1}{2}\))

a) Tính giá trị của B biết x=-2

b) Rút gọn A

c) Cho P=A:B Tìm x biết P=3

Cho biểu thức A=\(\left(\frac{2x-3}{x^2-9}-\frac{2}{x+3}\right):\frac{x}{x+3}\)(x khác +,- 3)

a) Rút gọn A

b) TÍnh giá trị của A khi x=\(-\frac{1}{2}\)

c) Tìm các giá trị nguyên của x để A nhận giá trị nguyên

16 tháng 12 2019

d601BC7.png

a

Do \(MN//BC\) nên theo định lý Thales ta có:\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{MN}{BC}\)

\(\Rightarrow\frac{8}{NC}=\frac{3}{2}\Rightarrow NC=\frac{16}{3}\)

Áp dụng định Pythagoras ta có:\(AM^2+AN^2=MN^2\Rightarrow MN=\sqrt{AM^2+AN^2}=10\)

Mà \(\frac{AM}{MB}=\frac{MN}{BC}\Rightarrow\frac{3}{2}=\frac{10}{BC}\Rightarrow BC=\frac{20}{3}\)

b

Hạ \(NH\perp BC;MG\perp BC\)

Áp dụng định lý Pythagoras vào tam giác ABC ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AB^2=\sqrt{BC^2-AC^2}\Rightarrow AB=\sqrt{10-\left(\frac{16}{3}\right)^2-8^2}=\frac{2\sqrt{17}}{3}\)

Bạn áp dụng định lý Ta Lét ( do ND//AB ) rồi tính được ND

Diện tích tam giác vuông NCD sẽ tính bằng \(\frac{NC\cdot ND}{2}\) ( do đã biết được ND và NC )

Lại có \(S_{NCD}=\frac{NH\cdot CD}{2}\) rồi tính được NH.

Do NH=MG nên tính được diện tích hình bình hành BMND.Hướng là thế đấy,bạn làm tiếp nha,mik nhác quá:( 

17 tháng 6 2016

A B C M N 3 5 10 16 6

Ta có: \(\frac{MB}{AB}=\frac{MB}{AM+MB}=\frac{5}{8}\)

\(\frac{NC}{AC}=\frac{10}{16}=\frac{5}{8}\)

=> \(\frac{MB}{AB}=\frac{NC}{AC}\)Theo định lí Ta-lét đảo

=>  MN // BC

Áp dụng hệ quả định lí Ta-lét vào \(\Delta ABC\)có MN // BC

=> \(\frac{MN}{BC}=\frac{AM}{AB}\)=> \(BC=\frac{MN.AB}{AM}=\frac{8.6}{3}=16\)