Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEMD có
AD//ME
AE//MD
Do đó; AEMD là hình bình hành
Suy ra:AD=ME
b: Ta có: AEMD là hình bình hành
nên hai đường chéo AM và ED cắt nhau tại trung điểm của mỗi đường
=>A,M,I thẳng hàng
A B C E M D I
a) Xét tam giác AED và tam giác MDE , có :
ED : chung
góc AED = góc MDE ( AB // DM )
góc ADE = góc MED ( EM // AC )
=> tam giác AED = tam giác MDE ( g-c-g )
=> AD = ME ( hai cạnh tương ứng )
Vậy AD = ME
b) Vì góc AIE + góc AID = 180 độ ( hai góc kề bù ) mà góc AID + góc DIM = 180 độ => ba điểm A , I , M thẳng hảng
Vây ba điểm A , I , M thẳng hảng
Câu hỏi của Joen Jungkook - Toán lớp 7 - Học toán với OnlineMath
a: Xét tứ giác BDEF có
BD//EF
DE//BF
Do đó: BDEF là hình bình hành
Suy ra: BD=EF
b: Xét ΔADE và ΔEFC có
\(\widehat{ADE}=\widehat{EFC}\)
AD=EF
\(\widehat{A}=\widehat{FEC}\)
Do đó: ΔADE=ΔEFC
c: Ta có: BDEF là hình bình hành
nên Hai đường chéo BE và DF cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của DF
nên M là trung điểm của BE
hay B,M,E thẳng hàng
Bài làm
a) xét tam giác AED và tam giác MDE có:
^ADE = ^DEM ( do AD // EM )
ED chung
^EDM = ^AED ( do AE // DM )
=> Tam giác AED = tam giác MDE ( g.c.g )
=> AD = ME
b) Gọi O là giao điểm của ED và AM
Nối AM
Xét tam giác AEM và tam giác MDA có:
^EAM = ^AMD ( so le trong vì EA // DM )
AM chung
^EMA = ^DAM ( so le trong vì EM // AD )
=> Tam giác AEM = tam giác MDA ( g.c.g )
=> AE = DM ( hai cạnh tương ứng )
Xét tam giác AEO và tam giác MDO có:
^AED = ^EDM ( so le trong vì AE // DM )
AE = DM ( chúng minh trên )
^EAM = ^AMD ( so le trong vì AE // DM )
=> Tam giác AEO = tam giác MDO ( g.c.g )
=> EO = OD
=> O là trung điểm ED. (1)
Mà OA = OM ( do tam giác AOE = tam giác DOM )
=> O là trung điểm của AM. (2)
Từ (1), (2) => O là trung điểm của ED và AM và là giao điểm của OE và AM
Mà I là trung điểm ED ( giả thiết )
=> Điểm O và I trùng nhau.
=> I là trung điểm của ED và AM, là giao điểm của AM và ED
=> 3 điểm A, I, M thẳng hàng