Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không làm mà đòi có ăn thì ............................................
Nguôi ta de len day de giúp chu ko de cho may Súa nhe con .......
a, vì M nằm ở trong tam giác ABC nên MC và MB nằm ở trong tam giác ABC
=) MC va MB lần lượt chia góc C và B làm 2 nửa
=) ^B = ^B1+ ^B2 ^C= ^C1+^C2
theo quan hệ giứa góc và cạnh đối diên có
ab tương ứng vs góc C, ac tương ứng vs góc B
MB .........................C1, MC B2
CÓ : ^B+^C > ^B2+^C2
=) AB+AC > MB+MC ( THEO QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN)
CON B THÌ CHỊU NHÉ
A B C M
a) Làm như bạn ly
b)Từ câu a) suy ra MB + MC < AB + AC;MA+MB < AC + BC
MA + MC < AB + BC
Cộng theo vế suy ra: \(2\left(MA+MB+MC\right)< 2\left(AB+BC+CA\right)\)
Suy ra \(MA+MB+MC< AB+BC+CA\) (1)
Mặt khác,áp dụng BĐT tam giácL
MB + MC > BC.Tương tự với hai BĐT còn lại và cộng theo vế: \(2\left(MA+MB+MC\right)>AB+BC+CA\)
Chia hai vế cho 2: \(MA+MB+MC>\frac{AB+BC+CA}{2}\)
A B C M D
a)
Áp dụng bất đẳng thức tam giác,ta có:
\(\hept{\begin{cases}AB< AM+MB\\AC< AM+MC\\BC< BM+BC\end{cases}}\Rightarrow AB+AC+BC< 2\left(AM+MB+MC\right)\)
b)
Gọi giao điểm của BM cắt AC tại D.
Do điểm M nằm trong tam giác ABC nên D thuộc AC.
\(\Rightarrow AC=AD+DC\)
Áp dụng bất đẳng thức tam giác vào tam giác ABD có:
BD<AB+AD => MB+MD<AB+AD(1)
Áp dụng bất đẳng thức tam giác vao tam giác MDC có:
MC<DC+MD(2)
Cộng vế theo vế của (1) với (2) ta có:
\(MB+MD+MC< AB+AD+DC+MD\)
\(\Rightarrow MB+MC< AB+\left(AD+DC\right)\)
\(\Rightarrow MB+MC< AB+AC\left(3\right)\)
chứng minh tương tự ta được:\(\hept{\begin{cases}MA+MC< BC+AB\left(4\right)\\MC+MB< AC+BC\left(5\right)\end{cases}}\)
Từ (3);(4):(5) suy ra \(2\left(AB+BC+CA\right)>2\left(MA+MB+MC\right)\)