K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

ta có : \(2\overrightarrow{AD}+\overrightarrow{CD}=\overrightarrow{0}\) \(\Leftrightarrow2\overrightarrow{AD}=\overrightarrow{DC}\) \(\Rightarrow\left\{{}\begin{matrix}D\in AC\\2AD=DC\end{matrix}\right.\)

\(3\overrightarrow{AE}+2\overrightarrow{BA}=\overrightarrow{0}\) \(\Leftrightarrow3\overrightarrow{AE}=2\overrightarrow{AB}\) \(\Rightarrow\left\{{}\begin{matrix}E\in AB\\AE=\dfrac{2}{3}AB\end{matrix}\right.\)

\(\Rightarrow\) HÌNH A B C E D

a) ta có tam giác \(ABC\) là tam giác đều \(\Rightarrow\widehat{BAC}=\widehat{EAD}=60^o\)

tâm quay là \(A\) \(\Rightarrow\) phép biến hình tâm \(A\) biến \(E\) thành \(D\)\(Q_{\left(A;\dfrac{\pi}{3}\right)}\)(các góc quay lệt nhau \(2\pi\))

b) ta có \(\widehat{BAC}=\widehat{EAD}=60^o\)\(\overrightarrow{ED}\uparrow\uparrow\overrightarrow{BC}\) ; \(\overrightarrow{AE}\uparrow\uparrow\overrightarrow{AB}\) ; \(\overrightarrow{AD}\uparrow\uparrow\overrightarrow{AC}\)

\(\Rightarrow\) ảnh của \(B\) qua phép biến hình trên là \(C\) .

7 tháng 7 2018

mấy dòng đầu có mũi tên chỉ lên là gì a

31 tháng 3 2017

undefined

- Dựng hình bình hành ABB'G và ACC'G. Khi đó ta có: \(\overrightarrow{AG}=\overrightarrow{BB'}=\overrightarrow{CC'}\)

. Suy ra \(^T\overrightarrow{AG}\left(A\right)=G,^T\overrightarrow{AG}\left(B\right)=B',^T\overrightarrow{AG}\left(C\right)=C'\)

Do đó ảnh của tam giác ABC qua phép tịnh tiến theo vectơ \(\overrightarrow{AG}\) là tam giác GB'C'.

- Trên tia GA lấy điểm D sao cho A là trung điểm của GD. Khi đó ta có \(\overrightarrow{DA}=\overrightarrow{AG}\). Do đó, \(^T\overrightarrow{AG}\left(D\right)=A\).

31 tháng 3 2017

undefined

- Dựng hình bình hành ABB'G và ACC'G. Khi đó ta có: −−→AG=−−→BB′=−−→CC′AG→=BB′→=CC′→

. Suy ra T−−→AG(A)=G,T−−→AG(B)=B′,T−−→AG(C)=C′TAG→(A)=G,TAG→(B)=B′,TAG→(C)=C′

Do đó ảnh của tam giác ABC qua phép tịnh tiến theo vectơ −−→AGAG→ là tam giác GB'C'.

- Trên tia GA lấy điểm D sao cho A là trung điểm của GD. Khi đó ta có −−→DA=−−→AGDA→=AG→. Do đó, T−−→AG(D)=ATAG→(D)=A.

24 tháng 8 2016

M-> M' => VÊCTỚ MM'= VT u 
Tv: M' -> M'' => vt M'M'' = v 
áp dụng quy tắc 3 diểm => vt MM' +M'M'' = u+v =w 
=> với mỗi điểm M qua phép tt theo vecto w se biến M -> M'' => ĐÓ LÀ PHÉP TT

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

31 tháng 3 2017

a) Giả sử A'=(x'; y'). Khi đó \(T_{\overrightarrow{v}}\left(A\right)=A'\Leftrightarrow\left\{{}\begin{matrix}x'=3-1=2\\y'=5+2=7\end{matrix}\right.\)

Do đó: A' = (2;7)

Tương tự B' =(-2;3)

b) Ta có: \(A=T_{\overrightarrow{v}}\left(C\right)\Leftrightarrow C=^T\overrightarrow{-v}\left(A\right)=\left(4;3\right)\)

c) Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến

Gọi M(x;y), M' = \(^T\overrightarrow{v}\) =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy \(^T\overrightarrow{v}\) (d) = d'.

Cách 2. Dùng tính chất của phép tịnh tiến

Gọi \(^T\overrightarrow{v}\)(d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó \(^T\overrightarrow{v}\) (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8.

31 tháng 3 2017

a) Giả sử A'=(x'; y'). Khi đó

(A) = A' ⇔

Do đó: A' = (2;7)

Tương tự B' =(-2;3)

b) Ta có A = (C) ⇔ C= (A) = (4;3)

c)Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến

Gọi M(x;y), M' = =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy (d) = d'

Cách 2. Dùng tính chất của phép tịnh tiến

Gọi (d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

Phép dời hình và phép đồng dạng trong mặt phẳng

7 tháng 6 2017

TenAnh1 A = (-0.14, -7.4) A = (-0.14, -7.4) A = (-0.14, -7.4) B = (14.46, -7.36) B = (14.46, -7.36) B = (14.46, -7.36) C = (-3.74, -5.6) C = (-3.74, -5.6) C = (-3.74, -5.6) D = (11.62, -5.6) D = (11.62, -5.6) D = (11.62, -5.6) E = (-3.32, -5.86) E = (-3.32, -5.86) E = (-3.32, -5.86) F = (12.04, -5.86) F = (12.04, -5.86) F = (12.04, -5.86)

31 tháng 3 2017

Giải bài 4 trang 92 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 4 trang 92 sgk Hình học 11 | Để học tốt Toán 11Giải bài 4 trang 92 sgk Hình học 11 | Để học tốt Toán 11