Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
a) Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
Suy ra: DB=DC(hai cạnh tương ứng)
b) Xét ΔDBH vuông tại H và ΔDCK vuông tại K có
DB=DC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDBH=ΔDCK(cạnh huyền-góc nhọn)
Suy ra: DH=DK(hai cạnh tương ứng)
a) Xét tam giác ADB và tam giác ADC có :
AB=AC (gt)
góc BAD= góc CAD(gt)
AD cạnh chung
=> tam giác ABD= tam giác ACD ( c-g-c)
b) hình như sai đề
ta có
A=4B (gt)
B=C (gt)
Xét tam giác ABC có
A+B+C=1800 ( tổng 3 góc trong tam giác )
<=> 4B+B+B=1800
6B=1800
B=300
=> A = 30X4=1200
C=B=300
a) Áp dụng định lí Pi-Ta-go vào ΔABC :
\(AC^2=BC^2-AB^2=10^2-6^2=64\)
\(AC=\sqrt{64}=8\left(cm\right)\).
b) ΔABK có BE vừa là đường cao vừa là trung tuyến nên tam giác ABk là tam giác cân.( nếu bạn chưa học tính chất này thì xét 2 tam giác BEA và BEK cũng được, điều kiện xét đã có sẵn r).
c) Xét ΔABD và ΔKBD có:
AB=AK(ΔABK cân tại B)
Góc ABD=KBD(gt)
BD cạnh chung
Vậy ΔABD=ΔKBD(c.g.c)
=> Góc BAD=BKD=90o(hai góc tương ứng)
hay DK vuông góc với BC
d) Vì DK vuông góc với BC
AH vuông góc với BC
nên DK//AH => Góc DKA=HAK(so le trong) (1)
Vì ΔABD=KBD(cmt) => AD=KD(2 cạnh tương ứng) hay tam giác ADK cân tại K
=> Góc DKA=DAK hay DKA=CAK (2)
Từ (1) và (2) suy ra Góc HAK=CAK
Hay AK là tia phân giác của góc HAC.