Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM có
AC là đường trung tuyến
AC=MB/2
Do đó: ΔABM vuông tại A
b: Xét ΔMCN và ΔNAP có
MC=NA
\(\widehat{MCN}=\widehat{NAP}\)
CN=AP
Do đó:ΔMCN=ΔNAP
Suy ra: MN=NP
Cm tương tự, ta được: ΔNAP=ΔPBM
Suy ra: NP=PM
hay MN=NP=PM
=>ΔMNP đều
a: Xét ΔABM có
AC là đường trung tuyến
AC=MB/2
Do đó: ΔABM vuông tại A
b: Xét ΔMCN và ΔNAP có
MC=NA
\(\widehat{MCN}=\widehat{NAP}\)
CN=AP
Do đó:ΔMCN=ΔNAP
Suy ra: MN=NP
Cm tương tự, ta được: ΔNAP=ΔPBM
Suy ra: NP=PM
hay MN=NP=PM
=>ΔMNP đều
a: Xét ΔABM có
AC là đường trung tuyến
AC=MB/2
Do đó: ΔABM vuông tại A
b: Xét ΔMCN và ΔNAP có
MC=NA
\(\widehat{MCN}=\widehat{NAP}\)
CN=AP
Do đó:ΔMCN=ΔNAP
Suy ra: MN=NP
Cm tương tự, ta được: ΔNAP=ΔPBM
Suy ra: NP=PM
hay MN=NP=PM
=>ΔMNP đều
a: Xét ΔABM có
AC là đường trung tuyến
AC=MB/2
Do đó: ΔABM vuông tại A
b: Xét ΔMCN và ΔNAP có
MC=NA
\(\widehat{MCN}=\widehat{NAP}\)
CN=AP
Do đó:ΔMCN=ΔNAP
Suy ra: MN=NP
Cm tương tự, ta được: ΔNAP=ΔPBM
Suy ra: NP=PM
hay MN=NP=PM
=>ΔMNP đều
a: Xét ΔABM có
AC là đường trung tuyến
AC=MB/2
Do đó: ΔABM vuông tại A
b: Xét ΔMCN và ΔNAP có
MC=NA
\(\widehat{MCN}=\widehat{NAP}\)
CN=AP
Do đó:ΔMCN=ΔNAP
Suy ra: MN=NP
Cm tương tự, ta được: ΔNAP=ΔPBM
Suy ra: NP=PM
hay MN=NP=PM
=>ΔMNP đều
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
A C B D E F M N P H I K O
Ta có: \(\Delta\)ABC đều, D\(\in\)AB, DE\(\perp\)AB, E\(\in\)BC
=> \(\Delta\)BDE có các góc với số đo lần lượt là: 300; 600; 900 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét \(\Delta\)BDE và \(\Delta\)CEF: ^BDE=^CEF=900; BD=CE; ^DBE=^ECF=600
=> \(\Delta\)BDE=\(\Delta\)CEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét \(\Delta\)BDE và \(\Delta\)AFD: BE=AD; ^DBE=^FAD=600; BD=AF => \(\Delta\)BDE=\(\Delta\)AFD (c.g.c)
=> ^BDE=^AFD=900 =>DF\(\perp\)AC (đpcm).
b) Ta có: \(\Delta\)BDE=\(\Delta\)CEF=\(\Delta\)AFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> \(\Delta\)DEF đều (đpcm).
c) \(\Delta\)DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200 (Kề bù)
=> \(\Delta\)PDM=\(\Delta\)MFN=\(\Delta\)NEP (c.g.c) => PM=MN=NP => \(\Delta\)MNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của \(\Delta\)ABC, chúng cắt nhau tại O.
=> O là trọng tâm \(\Delta\)ABC (1)
Do \(\Delta\)ABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: \(\Delta\)OAF; \(\Delta\)OBD và \(\Delta\)OCE:
AF=BD=CE
^OAF=^OBD=^OCE => \(\Delta\)OAF=\(\Delta\)OBD=\(\Delta\)OCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực \(\Delta\)DEF hay O là trọng tâm \(\Delta\)DEF (2)
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: \(\Delta\)ODP; \(\Delta\)OEN; \(\Delta\)OFM:
OD=OE=OF
^ODP=^OEN=^OFM => \(\Delta\)ODP=\(\Delta\)OEN=\(\Delta\)OFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của \(\Delta\)MNP
hay O là trọng tâm \(\Delta\)MNP (3)
Từ (1); (2) và (3) => \(\Delta\)ABC; \(\Delta\)DEF và \(\Delta\)MNP có chung trọng tâm (đpcm).
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300 ; 600 ; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE
=> AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900 ; BD=CE; ^DBE=^ECF=600 => ΔBDE=ΔCEF (g.c.g)
=> BE=CF
=> BC-BE=AC-CF => CE=AF=BD Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600 ; BD=AF => ΔBDE=ΔAFD (c.g.c) => ^BDE=^AFD=900 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt)
=> DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt)
=> DE=EF=FD. Mà DF=FM=EN=DP
=> DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600
=> ^PDM=^MFN=^NEP=1200 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác
=> ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác
=> OA=OB=OC
Xét 3 tam giác:
ΔOAF; ΔOBD và ΔOCE: AF=BD=CE ^OAF=^OBD=^OCE
=> ΔOAF=ΔOBD=ΔOCE (c.g.c) OA=OB=OC => OF=OD=OE
=> O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đều) Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM: OD=OE=OF ^ODP=^OEN=^OFM
=> ΔODP=ΔOEN=ΔOFM (c.g.c) OD=OE=OF (Tự c/m) => OP=ON=OM (Các cạnh tương ứng)
=> O là giao 3 đường trung trực của ΔMNP hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
A B C M N P
a) Dễ dàng tính được : góc sCAM = góc CMA = \(\frac{180^o-120^o}{2}=30^o\)
=> góc BAC + góc CAM = 60 độ + 30 độ = 90 độ
=> MA vuông góc với AP
b) Dễ dàng cm được : tam giác ANP = tam giác CNM = tam giác PBM (c.g.c)
=> MN = MP = NP => MN = NP = MP
c)
giúp mình câu c luôn đi pạn
giúp mình rồi mình tick cho nha