K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

A B C M N E

Gọi N là điểm trên BC sao cho BM = MN = NC

Do tam giác ABC đều nên AB = AC và \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

Từ đó ta có ngay \(\Delta ABM=\Delta ACN\left(c-g-c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{CAN}\)  (Hai góc tương ứng)

Lấy điểm E trên tia đối tia MA sao cho ME = MA

Khi đó ta có ngay \(\Delta ABM=\Delta ENM\left(c-g-c\right)\Rightarrow AB=EN\)

Xét tam giác ABM có góc B = 60o\(\widehat{BAM}< 30^o\) nên \(\widehat{AMB}>90^o\)

Vậy thì theo quan hệ cạnh góc trong tam giác AB > AM

Suy ra EN > AM

Lại có AM = AN nên EN > AN hay \(\widehat{MAN}>\widehat{MEN}\Rightarrow\widehat{MAN}>\widehat{BAM}\)

Ta có \(\widehat{BAM}+\widehat{MAN}+\widehat{NAC}=60^o\Rightarrow\widehat{MAN}+2\widehat{BAM}=60^o\)

mà \(\widehat{MAN}>\widehat{BAM}\Rightarrow3\widehat{BAM}< 60^o\Rightarrow\widehat{BAM}< 20^o\)

 

22 tháng 2 2018

tại sao góc BAM lại <30 độ ạ?

3 tháng 2 2016

Lấy NBC sao cho NC=13BC

 BM=MN=NC=BC3

Xét ΔABM và ΔACN, có:

AB=AC( cạnh trong tam giác đều)

Bˆ=Cˆ(góc trong tam giác đều)

BM=NC(cmt)

Vậy: ΔABMACN(cgc)

 AM=AN

 BAMˆ=CANˆ

 ΔAMN cân tại A

Trên tia đối MA lấy H sao cho MA=MH

Xét ΔABM và ΔHMN có:

AM=MH(theo điều giả sử trên)

AMBˆ=HMNˆ(đối đỉnh)

BM=MN( theo điều chứng minh trên)

Vậy: ΔABMHMN(c-g-c)

 AB=NH(cạnh tương ứng)

 BAMˆ=MHNˆ(góc tương ứng)

Trong ΔABM có:

Bˆ=60o và BAMˆ<60o do: Aˆ=60o

Nên: AMBˆ>90o

 AB lớn nhất tron tam giác ABC (theo quan hệ giữa góc và cạnh của tam giác)

 HN lớn nhất trong tam giác HMN

 HN>HM(1)

Ta có:

AN=HM(2)

Từ (1) và (2)  HN> AN

 NHMˆ>MANˆ (Qh giữa góc và cạnh trong một tam giác)

 MANˆ>BAMˆ(=CANˆ)

Giả sử:

MANˆ=BAMˆ=CANˆ=Aˆ2=20o

Mà: MANˆ>BAMˆ(=CANˆ)

Vậy: BAMˆ<20o (đcpcm)

 

3 tháng 2 2016

ban gioi wa

14 tháng 9 2018

Bạn tự vẽ hình nha!

Ta có: BM<MC => góc BOM < góc MOC

Ta lại có: góc BOM + góc BOA = góc MOC + góc COA

mà góc BOM < góc MOC => góc BOA > góc COA

11 tháng 8 2018

A B C M N

a, Vì AB = AC => \(\Delta ABC\)cân tại A

=> \(\widehat{ABC}=\widehat{ACB}\)

Xét \(\Delta ABM\)và \(\Delta ACN\), ta có:

AB = AC (gt)

\(\widehat{ABC}=\widehat{ACB}\)(Chứng minh trên)

BM = CN (gt)

=> \(\Delta ABM=\Delta ACN\left(c.g.c\right)\)

=> \(\widehat{BAM}=\widehat{CAN}\)

Vậy \(\widehat{BAM}=\widehat{CAN}\)

b,Vì \(\Delta ABM=\Delta ACN\)(Chứng minh trên) => AM = AN

=> \(\Delta AMN\)cân tại A

\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)

Vậy \(\widehat{AMN}=\widehat{ANM}\)