K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2023

Xét tứ giác AFHE có

\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

=>AFHE là tứ giác nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

=>IA=IH=IE=IF

Xét tứ giác BFEC có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

=>BFEC là tứ giác nội tiếp đường tròn đường kính BC

=>M là trung điểm của BC

=>MB=MC=ME=MF

Gọi O là giao điểm của AH với BC

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại O

ΔBHO vuông tại O

=>\(\widehat{OHB}+\widehat{OBH}=90^0\)

mà \(\widehat{OBH}+\widehat{OCE}=90^0\)(ΔBEC vuông tại E)

nên \(\widehat{OHB}=\widehat{OCE}\)

mà \(\widehat{OHB}=\widehat{IHE}\)(hai góc đối đỉnh)

nên \(\widehat{IHE}=\widehat{OCE}\)

IH=IE

=>\(\widehat{IHE}=\widehat{IEH}\)

mà \(\widehat{IHE}=\widehat{OCE}\)

nên \(\widehat{IEH}=\widehat{OCE}=\widehat{ECB}\)

ME=MB

=>ΔMEB cân tại M

=>\(\widehat{MEB}=\widehat{MBE}\)

=>\(\widehat{MEB}=\widehat{EBC}\)

\(\widehat{IEM}=\widehat{IEH}+\widehat{MEH}\)

\(=\widehat{EBC}+\widehat{ECB}\)

\(=90^0\)

=>ME là tiếp tuyến của (I)

2 tháng 7 2017

o o A B C M D

A) Vì AD và BD  là 2 tiếp tuyến của đt ( O)

=> Góc DAO = góc DBO =90 

Xét tứ giác ADBO  có

Góc DAO + góc DBO = 90+90 = 180

=> Tứ giác ADBO nội tiếp 

b)Xét tam giác BDM và tam giác CBD có

- Góc D chung 

- Góc DBM = góc BCD (  cùng chắn cung BM )

=> Tam giác BDM đồng dạng với tam giác CBD 

=> \(\frac{BD}{CD}=\frac{DM}{BD}\)

=>\(BD^2=DM.DC\)

Ta có  \(BD^2=BD.BD\)

Mà BD = AD ( 2 tiếp tuyến cắt nhau )

=>\(BD^2=AD.BD\)

Thay vào ta được 

\(AD.BD=DM.DC\)

C) Ta có tam giác ABC  cân tại A => AB = AC 

=> cung AB = cung AC

=> góc DAB = góc ABC ( góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp chắn các cung bằng nhau )

Mà 2 góc ở vị trí so le trong 

=> AD song song BC 

=> góc ADC = góc  DCB ( 2 GÓC SO LE TRONG )

Mà góc DCB = góc DBM 

=> Góc DBM = Góc ADC 

..... Đúng thì ủng hộ nha ....

a: góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

b; góc xAC=góc ABC

=>góc xAC=góc ADE

=>xy//DE