Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét \(\Delta BMD\)ta có:
\(MD=MB\left(gt\right)\)=> \(\Delta BMD\)cân tại M
Mà \(B\widehat{M}D=A\widehat{C}B=60^0\)( 2 góc n.t chắn cung AB)
Nên \(\Delta BMD\)đều
b/ Ta có \(\hept{\begin{cases}A\widehat{B}D+D\widehat{B}C=A\widehat{B}C\\D\widehat{B}C+M\widehat{B}C=D\widehat{B}M\\A\widehat{B}C=D\widehat{B}M\left(=60^0\right)\end{cases}}\)
=> \(A\widehat{B}D=M\widehat{B}C\)
Xét \(\Delta ADB\)và \(\Delta MBC\)ta có :
\(\hept{\begin{cases}BD=BM\left(\Delta MBDđều\right)\\BA=BC\left(\Delta ABCđều\right)\\A\widehat{B}D=M\widehat{B}C\left(cmt\right)\end{cases}}\)
=> \(\Delta ADB=\Delta CMB\)(c-g-c)
=>\(AD=MC\)
Ta có: \(\hept{\begin{cases}AM=AD+MD\\MD=MB\left(\Delta MBDđều\right)\\AD=MC\left(cmt\right)\end{cases}}\)
=>\(AM=MB+MC\)
c/
Ta có: \(AB=AC\)<=>\(\widebat{AB}=\widebat{AC}\)
Xét \(\Delta MAB\)và\(\Delta MHC\)ta có:
\(B\widehat{A}M=H\widehat{C}M\)(2 góc n.t chắn cung MB )
\(A\widehat{M}B=H\widehat{M}C\)(2 góc n.t chắn 2 cung = nhau )
=>\(\Delta MAB\)đồng dạng\(\Delta MCH\)
=>\(\frac{MA}{MC}=\frac{MB}{MH}\)=>\(\frac{MA}{MB.MC}=\frac{1}{MH}\)=>\(\frac{MB+MC}{MB.MC}=\frac{1}{MH}\)=>\(\frac{1}{MB}+\frac{1}{MC}=\frac{1}{MH}\left(đpcm\right)\)
1: góc MDC=1/2*sđ cung CM=90 độ
góc BDC=góc BAC=90 độ
=>BADC nội tiếp
2: góc DEM=góc DCA
góc DCA=góc AEM
=>góc DEM=góc AEM
=>EM là phân giác của góc AED
a: Xét (O) có
\(\widehat{AMB}\) là góc nội tiếp chắn cung AB
\(\widehat{ACB}\) là góc nội tiếp chắn cung AB
Do đó: \(\widehat{AMB}=\widehat{ACB}=60^0\)
Xét ΔMBD có MB=MD
nên ΔMBD cân tại M
Xét ΔMBD cân tại M có \(\widehat{DMB}=60^0\)
nên ΔMBD đều
b: ΔBMD đều
=>\(\widehat{BDM}=60^0\)
\(\widehat{BDA}+\widehat{BDM}=180^0\)(hai góc kề bù)
=>\(\widehat{BDA}=180^0-60^0=120^0\)
Xét (O) có A,B,M,C cùng thuộc (O)
nên ABMC là tứ giác nội tiếp
=>\(\widehat{BMC}+\widehat{BAC}=180^0\)
=>\(\widehat{BMC}=180^0-\widehat{BAC}=180^0-60^0=120^0\)
=>\(\widehat{BMC}=\widehat{BDA}\left(=120^0\right)\left(4\right)\)
Xét (O) có
\(\widehat{BAM}\) là góc nội tiếp chắn cung BM
\(\widehat{BCM}\) là góc nội tiếp chắn cung BM
Do đó: \(\widehat{BAM}=\widehat{BCM}\)
=>\(\widehat{BAD}=\widehat{MCB}\left(3\right)\)
Xét ΔBAD có \(\widehat{BAD}+\widehat{BDA}+\widehat{ABD}=180^0\)
=>\(\widehat{ABD}=180^0-\widehat{BAD}-\widehat{BDA}\)(1)
Xét ΔBMC có \(\widehat{BMC}+\widehat{MBC}+\widehat{MCB}=180^0\)
=>\(\widehat{MBC}=180^0-\widehat{BMC}-\widehat{MCB}\left(2\right)\)
Từ (1),(2),(3),(4) suy ra \(\widehat{ABD}=\widehat{MBC}\)
Xét ΔBDA và ΔBMC có
BA=BC
\(\widehat{ABD}=\widehat{MBC}\)
BD=BM
Do đó: ΔBDA=ΔBMC
=>AD=MC
AM=AD+DM
mà AD=MC và DM=MB
nên AM=BM+CM
A B C O M D a) Ta có:
góc ADC = \(\dfrac{sđcungAB-sđcungCM}{2}\) (góc ADC có đỉnh bên ngoài đường tròng (O)) (1)
góc ACM = \(\dfrac{sđcungAM}{2}=\dfrac{sđcungAC-sđcungCM}{2}\)
Mà AB=AC (tam giác ABC cân tại A)
=> cung AB = cung AC
=> góc ACM= \(\dfrac{sđcungAB-sđcungCM}{2}\) (2)
Từ (1) và (2) suy ra: góc ADC = góc ACM
b) Xét \(\Delta ACD\) và \(\Delta AMC\) , có:
góc A: góc chung
góc ADC = góc ACM (câu a)
=> \(\Delta ACD\) đồng dạng \(\Delta AMC\)
=> \(\dfrac{AC}{AM}=\dfrac{AD}{AC}\)
=> \(AC^2=AM.AD\)
c)
ai giúp với