Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ∆ ABC đồng dạng với ∆ AMN nên:
Diện tích hình chữ nhật MNPQ là:
SMNPQ = MN. NP = MN.KH = MN.( AH – AK)
=> SMNPQ = 16k.( 12- 12k)
Theo đề bài diện tích hình chữ nhật đó là 36cm2 nên
16k.( 12- 12k ) = 36
⇔ 16k.12( 1- k) = 36
⇔ 16k(1 – k) = 3 ( chia cả hai vế cho 12)
⇔ 16k – 16k2 = 3
⇔ 16k2- 16k + 3= 0
Ta có: ∆’= (-8)2 – 16.3 = 16> 0
Phương trình trên có 2 nghiệm là:
Vậy để diện tích hình chữ nhật MNPQ là 36cm2 thì vị trí điểm M phải thỏa mãn:
Vì ∆ ABC đồng dạng với ∆ AMN nên:
Diện tích hình chữ nhật MNPQ là:
SMNPQ = MN. NP = MN.KH = MN.( AH – AK)
=> SMNPQ = 16k.( 12- 12k)
Theo đề bài diện tích hình chữ nhật đó là 36cm2 nên
16k.( 12- 12k ) = 36
⇔ 16k.12( 1- k) = 36
⇔ 16k(1 – k) = 3 ( chia cả hai vế cho 12)
⇔ 16k – 16k2 = 3
⇔ 16k2- 16k + 3= 0
Ta có: ∆’= (-8)2 – 16.3 = 16> 0
Phương trình trên có 2 nghiệm là:
Vậy để diện tích hình chữ nhật MNPQ là 36cm2 thì vị trí điểm M phải thỏa mãn:
A B C M N P Q
a) Đặt tên các điểm như hình vẽ.
Giả sử BC = a; BM = x. Ta có MN = QP = a - 2x
Áp dụng định lý Ta let ta có:
\(\frac{AQ}{AB}=\frac{QP}{BC}\Rightarrow AQ=\frac{AB.QP}{BC}=a-2x\)
\(\Rightarrow QB=AB-AQ=a-\left(a-2x\right)=2x\)
\(\Rightarrow QM=\sqrt{QB^2-BM^2}=\sqrt{4x^2-x^2}=x\sqrt{3}\)
\(\Rightarrow S_{MNPQ}=MN.QM=\left(a-2x\right).x\sqrt{3}\)
\(=-2\sqrt{3}x^2+a\sqrt{3}x\)
\(=-2\sqrt{3}\left(x^2-2.\frac{a}{4}.x+\frac{a^2}{16}\right)+\frac{a^2\sqrt{3}}{8}\)
\(=-2\sqrt{3}\left(x-\frac{a}{4}\right)^2+\frac{a^2\sqrt{3}}{8}\le\frac{a^2\sqrt{3}}{8}\)
Vậy diện tích lớn nhất của hình chữ nhật là \(\frac{a^2\sqrt{3}}{8}\) khi BM = BC/4
b) Em tham khảo tại đây nhé.
Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 8 - Học toán với OnlineMath