K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!

11 tháng 11 2018

MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY VỚI Ạ !!! MAI MÌNH KIỂM TRA RÙI !!! THANK KIU EVERYONE,  MONG NHẬN ĐK CÂU TRẢ LỜI SỚM ( MÀ MỌI NGƯỜI KHÔNG CẦN VX HÌNH ĐÂU Ạ ^^)

11 tháng 11 2018

1)      a.   xét trong tam giác ABC có

           I trung điểm AB và K trung điểm AC  =>IK là đường trung bình của tam giác ABC=>IK song song với BC

            vậy BCKI là hình thang (vì có hai cạng đáy song song)

          b.

            IK  // và =1/2BC   (cm ở câu a)   =>IK song  song NM

            M trung điểm HC  và N trung điểm HB  mà HB+HC=CB =>MN=IK=1/2BC

            suy ra MKIN là hbh => có hai đường chéo bằng nhau =>IM=NK

26 tháng 12 2024

Lời giải chi tiết bài toán:

Đề bài:

Cho tam giác ABCABC vuông tại AA, có AB=aAB = a. Gọi M,N,DM, N, D lần lượt là trung điểm của AB,BC,ACAB, BC, AC.

  1. Chứng minh NDND là đường trung bình của tam giác ABCABC và tính độ dài của NDND theo aa.
  2. Chứng minh tứ giác ADNMADNM là hình chữ nhật.
  3. Gọi QQ là điểm đối xứng của NN qua MM. Chứng minh AQBNAQBN là hình thoi.
  4. Trên tia đối của tia DBDB lấy điểm KK sao cho DK=DBDK = DB. Chứng minh 3 điểm Q,A,KQ, A, K thẳng hàng.
Bài giải: 1. Chứng minh NDND là đường trung bình của tam giác ABCABC và tính độ dài NDND:
  • NN là trung điểm của BCBCDD là trung điểm của ACAC, theo định nghĩa đường trung bình:
    NDND song song với ABABND=12ABND = \frac{1}{2}AB.

  • Do AB=aAB = a, suy ra ND=12aND = \frac{1}{2}a.

Kết luận: NDND là đường trung bình của tam giác ABCABC, và ND=12aND = \frac{1}{2}a.

2. Chứng minh tứ giác ADNMADNM là hình chữ nhật:
  • MM là trung điểm của ABAB, nên AM=MB=12AB=12aAM = MB = \frac{1}{2}AB = \frac{1}{2}a.

  • ND∥ABND \parallel ABND=12ABND = \frac{1}{2}AB (tính chất đường trung bình).

  • AM⊥ABAM \perp AB (tam giác vuông tại AA), nên AM⊥NDAM \perp ND.

  • Tứ giác ADNMADNM có:

    • AD∥MNAD \parallel MN (vì cùng vuông góc với ABAB).
    • AM⊥NDAM \perp ND.

Do đó, ADNMADNM là hình chữ nhật.

3. Chứng minh AQBNAQBN là hình thoi:
  • QQ là điểm đối xứng của NN qua MM, nên MQ=MNMQ = MN.

  • MM là trung điểm của ABAB, suy ra AQ=BN=AB=aAQ = BN = AB = a.

  • Trong hình chữ nhật ADNMADNM:

    • AM=ND=12aAM = ND = \frac{1}{2}a, và MM là trung điểm của ABAB.
  • Tứ giác AQBNAQBN có:

    • AQ=BNAQ = BN.
    • AB=QN=aAB = QN = a.

Vậy AQBNAQBN là hình thoi.

4. Chứng minh 3 điểm Q,A,KQ, A, K thẳng hàng:
  • Trên tia đối của tia DBDB, lấy điểm KK sao cho DK=DBDK = DB.

  • QQ đối xứng với NN qua MM, nên MQ=MNMQ = MN.

  • Trong tam giác vuông ABCABC, DDMM lần lượt là trung điểm của ACACABAB:

    • DB=AC2+AB22=a2+AC22DB = \frac{\sqrt{AC^2 + AB^2}}{2} = \frac{\sqrt{a^2 + AC^2}}{2}.
    • DK=DBDK = DB, nên KK nằm trên đường thẳng qua DD kéo dài.
  • AQBNAQBN là hình thoi, nên AQAQ song song với DBDB. Kết hợp với vị trí của KK, suy ra Q,A,KQ, A, K thẳng hàng.

Kết luận:
  1. NDND là đường trung bình của tam giác ABCABC, ND=12aND = \frac{1}{2}a.
  2. ADNMADNM là hình chữ nhật.
  3. AQBNAQBN là hình thoi.
  4. Ba điểm Q,A,KQ, A, K thẳng hàng.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F saocho AE=EF=FC.a) Tứ giác BEDF là hình gì?b) Chứng minh tam giác CFD= tam giác AEBc) Chứng minh tam giác CFB= tam giác EADBài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình...
Đọc tiếp

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

Mong mn giúp mk vs ah

1

đây là nhóm hỏi những bài khó chứ không phải nơi chép bài của những bạn lười nhé

29 tháng 10 2021

Bạn nói hay đó

Đc của ló