Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F
a) Xét tam giác CEF và tam giác AED:
CE=AE
^CEF=^AED => Tam giác CEF=Tam giác AED (c.g.c)
EF=ED
=> CF=AD (2 cạnh tương ứng) => CF=DB
=> ^FCE=^DAE => CF//AD (So le trong) hay CF//DB => ^FCD=^BDC (So le trong)
Xét tam giác BDC và tam giác FCD:
DB=CF
^BDC=^FCD => Tam giác BDC=Tam giác FCD (c.g.c)
DC chung
b) Tam giác BDC=Tam giác FCD (cmt) => ^BCD=^FDC (2 góc tương ứng) => DF//BC hay DE//BC (1)
=> FD=BC (2 cạnh tương ứng) => 1/2FD=1/2BC => DE=1/2BC (2)
Từ (1) và (2) => ĐPCM.
a: Xét ΔAED và ΔCEF có
EA=EC
\(\widehat{AED}=\widehat{CEF}\)
ED=EF
Do đó: ΔAED=ΔCEF
b: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình
=>DE//BC và DE=1/2BC
B,D,C là 3 điểm thẳng hàng mà tam giác sao đc đề sai r kìa -.- DE giao BC song song sao đc ?
câu c bn tự lm nha
xét tam giác AED và tam giác CEF ta có
AE=CE ( giả thiết)
DE=EF ( gt )
góc AED = góc FEC ( đối đỉnh)
suy ra tam giác AED=tam giác CEF( c-g-c)
=> AD =CF
=> ra BD = CF( cùng bằng AD)
b) ta có tam giác AED = tam giác CEF ( cmt)
=> góc ADE = góc EFC mà hai góc này nằm ở vị trí sole tròn nên AB song song với CF => góc BDC = góc FCD
xét tam giác BDC và tam giác FCD ta có
CD cạnh chung
DB=CF ( theo câu a)
góc BDC=góc FCD
=>> tam giác BDC = tam giác FCD ( c-g-c)
đúng 99 % đs hình bn tự vẽ nha với câu c mình ko biết lm ahihi
Xet ∆AED=∆CEF ( c-g-c )
=) AD=CF
Mà AD=DB
Suy ra DB=CF
b+c)
Ta có D là tđ AB
F là tđ AC
Suy ra * DE//BC
=) FDC = DCB ( slt )
* DE = 1/2BC =) BC = DF
Xét∆BDC=∆FCD ( c-g-c)
Cho tam giác abc có gốc a bằng 90° trên bc lấy e sao cho BE = BA tia ph . Giác của góc b cắt ac ở d
a chứng minh tam giác ABD = EBD
b tính số đo BEM
c Chứng minh BD vuông góc với AE
a: Xét tứ giác ADCF có
E là trung điểm của AC
E là trung điểm của DF
Do đó: ADCF là hình bình hành
Suy ra: AD//CF và AD=CF
=>BD=CF và BD//CF
Xét ΔBDC và ΔFCD có
\(\widehat{BDC}=\widehat{FCD}\)
DC chung
\(\widehat{BCD}=\widehat{FDC}\)
Do đó:ΔBDC=ΔFCD
b: Xét ΔACB có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC và DE=1/2BC