Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác DEF và tam giác FBD có:
Cạnh DF chung
\(\widehat{EDF}=\widehat{BFD}\) (Hai góc so le trong)
\(\widehat{EFD}=\widehat{BDF}\) (Hai góc so le trong)
\(\Rightarrow\Delta DEF=\Delta FBD\left(g-c-g\right)\Rightarrow EF=BD=AD\)
b)
Xét tam giác ADE và tam giác EFC có:
\(\widehat{DAE}=\widehat{FEC}\) (Hai góc so le trong)
\(\widehat{EFC}=\widehat{ADE}\left(=\widehat{DBF}\right)\)
\(\Rightarrow\Delta ADE=\Delta EFC\left(g-c-g\right)\Rightarrow AE=EC\)
Từ đó ta cũng suy ra DE = FC
Lại có do \(\Delta DEF=\Delta FBD\Rightarrow DE=FB\)
Vậy nên FC = FB
c) Ta có FC = FB = DE nên \(DE=\frac{BC}{2}\)
EF = AD = DB nên \(EF=\frac{AB}{2}\)
Bn ơi, cho mk hỏi tí! Cái chỗ góc A = góc DBM ( 2 góc tương ứng ) sao có thể suy ra AC // MB, bn có thể lm rõ hơn chỗ đó cho mk đc ko
Bạn tự vẽ hình nha!!!
a) Vì AD // FE nên \(\widehat{ADE}=\widehat{FED}\) (2 góc so le trong) và \(\widehat{AED}=\widehat{FDE}\) (2 góc so le trong)
Xét \(\Delta ADE\) và \(\Delta FED\) có:
\(\widehat{ADE}=\widehat{FED}\) (c/m trên)
DE là cạnh chung
\(\widehat{AED}=\widehat{FDE}\) (c/m trên)
=> \(\Delta ADE=\Delta FED\) (g.c.g)
=> AD=EF (2 cạnh tương ứng)
b) Vì FD // EC nên \(\widehat{DFE}=\widehat{CEF}\) (2 góc so le trong)
Mặt khác DE // CF nên \(\widehat{DEF}=\widehat{CFE}\) (2 góc so le trong)
Xét \(\Delta FED\) và \(\Delta EFC\) có:
\(\widehat{DEF}=\widehat{CFE}\) (c/m trên)
EF là cạnh chung
\(\widehat{DFE}=\widehat{CEF}\) (c/m trên)
=> \(\Delta FED=\Delta EFC\left(g.c.g\right)\)
=> \(\Delta ADE=\Delta EFC\left(\Delta ADE=\Delta FED\right)\)
=> AE=EC (2 cạnh tương ứng)
Vì AD=EF(c/m trên). Mà AD=BD (D là trung điểm của AB)
=> BD=EF
Mặt khác \(\Delta FED=\Delta EFC\) (c/m trên)
=> FD=EC (2 cạnh tương ứng)
Ta có: EF // BD nên \(\widehat{BDF}=\widehat{DFE}\) (2 góc so le trong)
Mà \(\widehat{DFE}=\widehat{CEF}\) (c/m trên) => \(\widehat{BDF}=\widehat{CEF}\)
Xét \(\Delta BDF\) và \(\Delta FEC\) có:
\(\widehat{BDF}=\widehat{CEF}\) (c/m trên)
FD=EC (c/m trên)
\(\widehat{BFD}=\widehat{FCE}\) (FD // EC)
=> \(\Delta BDF=\Delta FEC\left(g.c.g\right)\)
=> BF=FC (2 cạnh tương ứng)
c) Vì \(\Delta FED=\Delta EFC\) (c/m trên) => DE=FC (2 cạnh tương ứng). Mà DF=\(\frac{1}{2}BC\) (BF=FC)
=> DE=\(\frac{1}{2}BC\)
Mặt khác EF=AD (c/m trên). Mà AD=\(\frac{1}{2}BC\) (D là trung điểm của AB)
=> EF=\(\frac{1}{2}AB\)
a: Xét ΔABC có
D là trung điểm của AB
DE//BC
=>E là trung điểm của AC
=>AE=EC
Xét ΔCAB có
E là trung điểm của CA
EF//AB
=>F là trung điểm của BC
=>FB=FC
b: Xét ΔABC có D,E lần lượt là trung điểm của AB,AC
nên DE là đường trung bình
=>ED=1/2BC
Xét ΔCAB có CF/CB=CE/CA
nên EF//AB
=>FE/AB=CF/CB=1/2
=>FE=1/2AB
Em tham khảo tại đây nhé.
Câu hỏi của ngdinhthaihoang123 - Toán lớp 7 - Học toán với OnlineMath