K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

tu ve hinh : 

xet tamgiac KDA va tamgiac EDB co : DK = DE (gt)

DB = DA do D la trung diem cua AB (gt) 

goc KDA = goc BDE (doi dinh)

=> tamgiac KDA = tamgiac EDB (c - g - c)

=> goc KAD = goc DBE (dn) ma 2 goc nay so le trong

=> KA // BC (dh) (1)

b, (1) => goc KAE = goc AEC (soletrong) 

xet tamgiac KAI va tamgiac CEI co : goc KIA = goc EIC  (doi dinh)

AI = IE do I la trung diem cua AE (gt)

=> tamgiac KAI = tamgiac CEI (g - c - g)

=> KI = IC (dn) ma I nam giua K va C

=> I la trung diem cua KC (dn)

vay_

27 tháng 8 2019

a) Xét \(\Delta ADK\)và \(\Delta BDE\)có:

      AD = BD (gt)

      \(\widehat{ADK}=\widehat{BDE}\)

       DK = DE (gt)

Suy ra \(\Delta ADK\)\(=\Delta BDE\left(c-g-c\right)\)

\(\Rightarrow\widehat{DAK}=\widehat{DBE}\)(hai góc tương ứng) và AK = BE

Mà 2 góc này ở vị trí so le trong nên \(AK//BC\)(đpcm)

b) Xét \(\Delta EIC\)và \(\Delta AIK\)có:

      EI = AI (gt)

      \(\widehat{IEC}=\widehat{IAK}\)(\(AK//BC\),so le trong)

      EC = AK ( Vì AK = BE mà BE = EC)

Suy ra \(\Delta EIC\)\(=\Delta AIK\left(c-g-c\right)\)

\(\Rightarrow KI=CI\)(hai cạnh tương ứng)

Từ đề bài suy ra DE là đường trung bình của \(\Delta ABC\)

\(\Rightarrow DE//AC\)

CM tương tự được: \(\Delta KIE=\Delta CIA\)

Sao đó c/m \(KIC=180^0\)rồi suy ra I là trung điểm của KC

9 tháng 9 2019

18 tháng 12 2019

ai giúp mik vs đúng mik chooooo

a) Xét \(\Delta AMB\)và \(\Delta DMC\)có:

         MA = MD (gt)

         \(\widehat{AMB}=\widehat{DMC}\)(2 góc đối đỉnh)

          MB = MC (M là trung điểm của BC)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)

b) Xét \(\Delta AMC\)và \(\Delta DMB\)có:

          MA = MD (gt)

          \(\widehat{AMC}=\widehat{DMB}\)(2 góc đối đỉnh)

           MC = MB (M là trung điểm của BC)

\(\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\)

\(\Rightarrow\widehat{ACM}=\widehat{DBM}\)(2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow AC//BD\)

c) Ta có: \(\Delta AMC=\Delta DMB\)(theo b)

=> AC = BD (2 cạnh tương ứng)

Xét \(\Delta DBK\)và \(\Delta ACH\)có:

          \(\widehat{BKD}=\widehat{CHA}=90^o\left(gt\right)\)

          BD = AC (cmt)

          \(\widehat{DBK}=\widehat{ACM}\)(cm b)

\(\Rightarrow\Delta DBK=\Delta ACH\left(CH-GN\right)\)

=> BK = CH (2 cạnh tương ứng)

d) Ta có: \(\Delta AMB=\Delta DMC\)(theo a)

=> AB = CD (2 cạnh tương ứng)   (1)

     \(\widehat{ABM}=\widehat{DCM}\)(2 góc tương ứng)

Mà 2 góc ở vị trí so le trong => AB // CD (2)

Xét \(\Delta ABI\)và \(\Delta CEI\)có:

      AI = CI (I là trung điểm của AC)

      \(\widehat{AIB}=\widehat{CIE}\)(2 góc đối đỉnh)

       BI = EI (I là trung điểm của BE)

\(\Rightarrow\Delta ABI=\Delta CEI\left(c.g.c\right)\)

\(\Rightarrow AB=CE\)(2 cạnh tương ứng)   (3)

      \(\widehat{ABI}=\widehat{CEI}\)(2 góc tương ứng)(4)

Mà 2 góc này ở vị trí so le trong

=> AB // CE

Từ (1) và (3) => CD = CE (5)

Từ (2) và (4) => C,D,E thẳng hàng (6)

Từ (5) và (6) => C là trung điểm của DE