Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Con tham khảo tại link dươi đây nhé:
Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath
Con tham khảo tại link dươi đây nhé:
Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath
Trả lời:
-Bạn tham khảo link dưới đây nhé!
https://olm.vn/hoi-dap/detail/194103532337.html
#Trúc Mai
a) Xét tứ giác AEDF có DE song song và bằng AF nên AEDF là hình bình hành (Dấu hiệu nhận biết).
Vậy thì AE = FD (tính chất hình bình hành)
b) Do AEDF là hình bình hành nên hai đường chéo AD và EF cắt nhau tại trung điểm mỗi đường.
Theo đề bài thì I là trung điểm AD nên I cũng là trung điểm EF.
Vậy E đối xứng với F qua I.
A A B B C C M M D D E E F F
a) Ta có : \(\frac{DF}{AM}=\frac{DC}{MC};\frac{DE}{AM}=\frac{BD}{MB}\)
\(\Rightarrow\frac{DE+DF}{AM}=\frac{BD}{BM}+\frac{DC}{MC}=\frac{BD+DC}{MC}=\frac{BC}{MC}=2\)
Vậy nên DE + DF = 2AM.
b) Theo định lý Ta let ta có:
\(\frac{AE}{AB}=\frac{DM}{BM}=\frac{DM}{MC}=\frac{AF}{AC}\)
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)
A B C E F I
Vì AF=ED và AF//ED( do AB//ED) nên AFDE là hình bình hành
=> IF=IE ( I là giao điểm của hai đường chéo)
vậy F và E đối xứng với nhau qua I
vì AFDE là hình bình hành nên DF=AE
Vậy DF=AE