K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)

=> \(R = \frac{a}{{2\sin A}}\) => A sai.

 \(R = \frac{b}{{2\sin B}}=\frac{b}{{2\sin 135^o}}=\frac{{\sqrt 2 }}{2}b\) => B đúng.

C. \(R = \frac{{\sqrt 2 }}{2}c\) (Loại vì không có dữ kiện về góc C nên không thể tính R theo c.)

D. \(R = \frac{{\sqrt 2 }}{2}a\) (Loại vì không có dữ kiện về góc A nên không thể tính R theo a.)

Chọn B

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

A. \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\) (Loại)

Vì: Theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)

Không đủ dữ kiện để suy ra \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\)

B. \(\frac{b}{{\sin A}} = \frac{a}{{\sin B}}\) (Loại)

Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \nRightarrow \frac{b}{{\sin A}} = \frac{a}{{\sin B}}\)

C. \(\sin B = \frac{{ - \sqrt 2 }}{2}\)(sai vì theo câu a, \(\sin B = \frac{{\sqrt 2 }}{2}\))

D. \({b^2} = {c^2} + {a^2} - 2ca\cos {135^o}.\)

Theo định lý cos ta có:

\({b^2} = {c^2} + {a^2} - 2ca.\cos B\) (*)

Mà \(\widehat B = {135^o} \Rightarrow \cos B = \cos {135^o}\).

Thay vào (*) ta được: \({b^2} = {c^2} + {a^2} - 2ca\;\cos {135^o}\)

=> D đúng.

Chọn D

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Diện tích tam giác ABC: \(S = \frac{1}{2}ac.\sin B\)

Mà \(\widehat B = {135^o} \Rightarrow \sin B = \sin {135^o} = \frac{{\sqrt 2 }}{2}\).

\( \Rightarrow S = \frac{1}{2}ac.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 }}{4}.ac\)

Chọn D

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Chọn đáp án B

A. \(S = \frac{{abc}}{{4r}}\)

Ta có: \(S = \frac{{abc}}{{4R}}\). Mà \(r < R\)nên suy ra \(S = \frac{{abc}}{{4R}} < \frac{{abc}}{{4r}}\)

Vậy A sai.

B. \(r = \frac{{2S}}{{a + b + c}}\)

Ta có: \(S = pr \Rightarrow r = \frac{S}{p}\)

Mà\(p = \frac{{a + b + c}}{2}\;\; \Rightarrow r = \frac{S}{p}\; = \frac{S}{{\frac{{a + b + c}}{2}}} = \frac{{2S}}{{a + b + c}}\;\)

Vậy B đúng

C. \({a^2} = {b^2} + {c^2} + 2bc\;\cos A\)

Sai vì theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc\;\cos A\)

D. \(S = r\,(a + b + c)\)

Sai vì \(S = pr = r.\frac{{a + b + c}}{2}\)

b) Chọn đáp án A

A. \(\sin A = \sin \,(B + C)\)

Ta có: \(\widehat A + \widehat B + \widehat C = {180^o}\)

\(\begin{array}{l} \Rightarrow \widehat B + \widehat C = {180^o} - \widehat A\\ \Rightarrow \sin \,(B + C) = \sin A\end{array}\)

Vậy A đúng.

B. \(\cos A = \cos \,(B + C)\)

Sai vì \(\cos \,(B + C) =  - \cos A\)(Do \(\widehat A + \widehat B + \widehat C = {180^o}\))

C. \(\;\cos A > 0\)

Không đủ dữ kiện để kết luận.

Nếu \({0^o} < \widehat A < {90^o}\) thì \(\cos A > 0\)

Nếu \({90^o} < \widehat A < {180^o}\) thì \(\cos A < 0\)

D. \(\sin A\,\, \le 0\)

Ta có \(S = \frac{1}{2}bc.\sin A > 0\)

Mà \(b,c > 0\)

\( \Rightarrow \sin A > 0\)

Vậy D sai.

NV
10 tháng 7 2020

Gọi M là trung điểm BC, I là tâm đường tròn nội tiếp và N là hình chiếu của I lên AB

\(\Rightarrow\left\{{}\begin{matrix}AM=R\\AN=IN=IM=r\end{matrix}\right.\)

Áp dụng Pitago: \(AI=\sqrt{AN^2+IN^2}=r\sqrt{2}\)

\(AI+IM=R\Rightarrow r\sqrt{2}+r=R\)

\(\Rightarrow r\left(\sqrt{2}+1\right)=R\Rightarrow\frac{R}{r}=1+\sqrt{2}\)

Câu 1: Cho tam giác ABC. Khẳng định nào sau đây đúng ? A: \(h_a=R.sinB.sinC\) B: \(h_a=4R.sinB.sinC\) C: \(h_a=2R.sinB.sinC\) D: \(h_a=\frac{1}{4}R.sinB.sinC\) Câu 2: Cho tam giác ABC nội tiếp (O,R). Diện tích tam giác ABC bằng ? A: \(\frac{1}{2}R^2\left(sin2A+sin2B+sin2C\right)\) B: \(R^2\left(sin2A+sin2B+sin2C\right)\) C: \(\frac{1}{2}R^2\left(sinA+sinB+sinC\right)\) D: \(R^2\left(sinA+sinB+sinC\right)\) Câu 3: Cho tam giác ABC, M và N lần lượt...
Đọc tiếp

Câu 1: Cho tam giác ABC. Khẳng định nào sau đây đúng ?

A: \(h_a=R.sinB.sinC\)

B: \(h_a=4R.sinB.sinC\)

C: \(h_a=2R.sinB.sinC\)

D: \(h_a=\frac{1}{4}R.sinB.sinC\)

Câu 2: Cho tam giác ABC nội tiếp (O,R). Diện tích tam giác ABC bằng ?

A: \(\frac{1}{2}R^2\left(sin2A+sin2B+sin2C\right)\)

B: \(R^2\left(sin2A+sin2B+sin2C\right)\)

C: \(\frac{1}{2}R^2\left(sinA+sinB+sinC\right)\)

D: \(R^2\left(sinA+sinB+sinC\right)\)

Câu 3: Cho tam giác ABC, M và N lần lượt thuộc 2 tia AB và AC (M, N ≠ A). Khẳng định nào sau đây đúng ?

A: \(\frac{S_{AMN}}{S_{ABC}}=3\frac{AM}{AB}.\frac{AN}{AC}\)

B: \(\frac{S_{AMN}}{S_{ABC}}=2\frac{AM}{AB}.\frac{AN}{AC}\)

C: \(\frac{S_{AMN}}{S_{ABC}}=\frac{1}{2}\frac{AM}{AB}\frac{AN}{AC}\)

D: \(\frac{S_{AMN}}{S_{ABC}}=\frac{AM}{AB}\frac{AN}{AC}\)

Câu 4: Cho tam giác ABC có a=BC, b=AC, c=AB. Khẳng định nào sau đây là đúng ?

A: a =b.cosB+c.cosC

B: a =b.cosC+b.cosB

C: a =b.sinB+c.sinC

D: a=b.sinC+c.sinB

0
Hi  :DSau đây là một số bài mình sưu tầm được và mình post lên đây nhầm mong muốn các bạn đóng góp lời giải của mình vàoCâu 1:Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:\(\frac{1}{4a^2-2a+1}+\frac{1}{4b^2-2b+1}+\frac{1}{4c^2-2c+1}\ge1\left(\cdot\right)\)Câu 2:Với a,b,c là các số thực dương và \(abc=1\).Chứng minh...
Đọc tiếp

Hi  :D

Sau đây là một số bài mình sưu tầm được và mình post lên đây nhầm mong muốn các bạn đóng góp lời giải của mình vào

Câu 1:

Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:

\(\frac{1}{4a^2-2a+1}+\frac{1}{4b^2-2b+1}+\frac{1}{4c^2-2c+1}\ge1\left(\cdot\right)\)

Câu 2:

Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:

\(\frac{1}{\sqrt{4a^2+a+4}}+\frac{1}{\sqrt{4b^2+b+4}}+\frac{1}{\sqrt{4c^2+c+4}}\le1\left(\cdot\cdot\right)\)

Câu 3:

Với a,b,c,d là các số thực dương và \(\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3}+\frac{1}{d+3}=1\).Chứng minh rằng:

\(\frac{a}{a^2+3}+\frac{b}{b^2+3}+\frac{c}{c^2+3}+\frac{d}{d^2+2}\le1\left(\cdot\cdot\cdot\right)\)

Câu 4:

Với a,b,c,d thõa mãn điều kiện \(a+b+c+d=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\),Chứng minh rằng:

\(2\left(a+b+c+d\right)\ge\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}+\sqrt{d^2+3}\left(\cdot\cdot\cdot\cdot\right)\)

Câu 5:

Với a,b,c là các số thực không âm.Chứng minh rằng:

\(\frac{a^2-bc}{2a^2+b^2+c^2}+\frac{b^2-ca}{a^2+2b^2+c^2}+\frac{c^2-ab}{a^2+b^2+2c^2}\ge0\left(\cdot\cdot\cdot\cdot\cdot\cdot\right)\)

 

Continue...

 

 

1
31 tháng 5 2020

Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)

Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)

Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:

Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:

\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)

Đây là điều hiển nhiên.

NV
14 tháng 3 2020

\(\Rightarrow\left\{{}\begin{matrix}a=t\sqrt{3}\\b=t\sqrt{2}\\c=\frac{t\left(\sqrt{6}-\sqrt{2}\right)}{2}\end{matrix}\right.\)

\(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{2t^2+\left(2-\sqrt{3}\right)t^2-3t^2}{t^2.\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}=-\frac{1}{2}\)

\(\Rightarrow A=120^0\)

\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{\sqrt{2}}{2}\Rightarrow B=45^0\)

\(\Rightarrow C=180^0-\left(A+B\right)=15^0\)

\(R=\frac{a}{2sinA}=\frac{2\sqrt{3}}{2sin120^0}=2\)