Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có K là điểm đối xứng của H qua tâm M nên MK = MH
Xét tứ giác BHCK, ta có:
BM = MC (gt)
MK = MH (chứng minh trên)
Suy ra: Tứ giác BHCK là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)
Suy ra: KB // CH, KC // BH
Ta có: CH ⊥ AB (gt)
Suy ra: KB ⊥ AB nên ∠ (KBA) = 90 0
Ta có: BH ⊥ AC (gt)
Suy ra: CK ⊥ AC nên ∠ (KCA) = 90 0
Xet tứ giác BHCK có
MH=MK; MB=MC => BHCK là hình bình hành (Tứ giác có các cặp cạnh đối cắt nhau tại trung điểm mỗi đường là hbh)
=> CK//BH mà BH vuông góc với AC => CK vuông góc với AC => \(\widehat{ACK}=90^o\)
=> BK//CH mà CH vuông góc với AB => BK vuông góc với AB => \(\widehat{ABK}=90^o\)
Ta có K là điểm đối xứng của H qua tâm M nên MK = MH
Xét tứ giác BHCK ta có:
BM = MC (gt)
MK = MH (chứng minh trên)
Suy ra: Tứ giác BHCK là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)
Suy ra: KB // CH, KC // BH
CH ⊥ AB (gt)
\(\Rightarrow KB\perp AB\Rightarrow\widehat{KBA}=90^0\)
BH ⊥ AC (gt)
\(\Rightarrow CK\perp AC\Rightarrow\widehat{KCA}=90^0\)
1: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
2: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của đường chéo BC
nên M là trung điểm của HD
hay H và D đối xứng nhau qua M
1: Xét tứ giác BHCD có
CH//BD
BH//CD
Do đó: BHCD là hình bình hành
2: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
hay H và D đối xứng nhau qua M