K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

M là trung điểm BC.

\(\overrightarrow{CI}=\overrightarrow{CA}+\overrightarrow{AI}=-\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{AM}=-\overrightarrow{AC}+\dfrac{1}{6}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{6}\overrightarrow{AB}-\dfrac{5}{6}\overrightarrow{AC}\)

\(\overrightarrow{CK}=\overrightarrow{CA}+\overrightarrow{AK}=-\overrightarrow{AC}+\dfrac{1}{5}\overrightarrow{AB}=\dfrac{6}{5}\overrightarrow{CI}\)

Suy ra C, I, K thẳng hàng.

30 tháng 8 2019

M là trung điểm BC.

CI=CA+AI=AC+13AM=AC+16(AB+AC)=16AB56AC

CK=CA+AK=AC+15AB=65CI

Suy ra C, I, K thẳng hàng.

30 tháng 8 2019

M là trung điểm BC

\(\overrightarrow{CI}=\overrightarrow{CA}+\overrightarrow{AI}=\overrightarrow{-AC}+\frac{1}{3}\overrightarrow{AM}=\overrightarrow{-AC}+\frac{1}{6}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\frac{1}{6}\overrightarrow{AB}-\frac{5}{6}\overrightarrow{AC}\)

\(\overrightarrow{CK}=\overrightarrow{CA}+\overrightarrow{AK}=\overrightarrow{-AC}+\frac{1}{5}\overrightarrow{AB}=\frac{6}{5}\overrightarrow{CI}\)

\(\Rightarrow\) C, I, K thẳng hàng

30 tháng 10 2018

đầu tiên là tìm tọa độ điểm G

=> G(3;5/3)

=> I(1;11/6)

ta có AB= 5AK( vecto)

=>K(-1/5;12/5)

CI= ( -6;17/6)

CK=( -36/5; 17/5)

CI/CK=5/6

=> C,I,K thẳng hàng

NV
15 tháng 12 2020

Bạn xem lại đề, I không thể là trung điểm AC.

Vì I là trung điểm AC, K thuộc AC nghĩa là I, K đều thuộc AC, vậy B,I,K thẳng hàng chỉ khi B cũng thuộc AC nốt (vô lý)

 

NV
27 tháng 7 2021

Gọi M là trung điểm BC, theo tính chất trọng tâm:

\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)

Mà I là trung điểm AG \(\Rightarrow\overrightarrow{IG}=\dfrac{1}{2}\overrightarrow{AG}=\dfrac{1}{3}\overrightarrow{AM}\Rightarrow\overrightarrow{GI}=-\dfrac{1}{3}\overrightarrow{AM}\)

Lại có: M là trung điểm BC \(\Rightarrow\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)

Nên ta có:

\(\overrightarrow{AB}+\overrightarrow{AC}+6\overrightarrow{GI}=\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{AM}+\overrightarrow{MC}+6.\left(-\dfrac{1}{3}\right)\overrightarrow{AM}\)

\(=2\overrightarrow{AM}-2\overrightarrow{AM}=\overrightarrow{0}\) (đpcm)

a: vecto AB=(-3;-4)

vecto AC=(3;-2)

Vì -3/3<>-4/2-2

nên A,B,C là ba đỉnh của 1 tam giác

b: Tọa độ G là:

x=(2-1+5)/3=2 và y=(3-1+1)/3=2

=>G(2;2) và A(2;3)

Tọa độ I là:

x=(2+2)/2=2 và y=(2+3)/2=2,5

c: K thuộc Oy nên K(0;y)

vecto AI=(0;-0,5); vecto AK=(-2;y-3)

Theo đề, ta có:

0/-2=-0,5/y-3

=>-0,5/y-3=0

=>Ko có K thỏa mãn