Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M là trung điểm BC.
CI−→=CA−→−+AI−→=−AC−→−+13AM−→−=−AC−→−+16(AB−→−+AC−→−)=16AB−→−−56AC−→−
CK−→−=CA−→−+AK−→−=−AC−→−+15AB−→−=65CI−→
Suy ra C, I, K thẳng hàng.
M là trung điểm BC
\(\overrightarrow{CI}=\overrightarrow{CA}+\overrightarrow{AI}=\overrightarrow{-AC}+\frac{1}{3}\overrightarrow{AM}=\overrightarrow{-AC}+\frac{1}{6}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\frac{1}{6}\overrightarrow{AB}-\frac{5}{6}\overrightarrow{AC}\)
\(\overrightarrow{CK}=\overrightarrow{CA}+\overrightarrow{AK}=\overrightarrow{-AC}+\frac{1}{5}\overrightarrow{AB}=\frac{6}{5}\overrightarrow{CI}\)
\(\Rightarrow\) C, I, K thẳng hàng
đầu tiên là tìm tọa độ điểm G
=> G(3;5/3)
=> I(1;11/6)
ta có AB= 5AK( vecto)
=>K(-1/5;12/5)
CI= ( -6;17/6)
CK=( -36/5; 17/5)
CI/CK=5/6
=> C,I,K thẳng hàng
Bạn xem lại đề, I không thể là trung điểm AC.
Vì I là trung điểm AC, K thuộc AC nghĩa là I, K đều thuộc AC, vậy B,I,K thẳng hàng chỉ khi B cũng thuộc AC nốt (vô lý)
Gọi M là trung điểm BC, theo tính chất trọng tâm:
\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)
Mà I là trung điểm AG \(\Rightarrow\overrightarrow{IG}=\dfrac{1}{2}\overrightarrow{AG}=\dfrac{1}{3}\overrightarrow{AM}\Rightarrow\overrightarrow{GI}=-\dfrac{1}{3}\overrightarrow{AM}\)
Lại có: M là trung điểm BC \(\Rightarrow\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
Nên ta có:
\(\overrightarrow{AB}+\overrightarrow{AC}+6\overrightarrow{GI}=\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{AM}+\overrightarrow{MC}+6.\left(-\dfrac{1}{3}\right)\overrightarrow{AM}\)
\(=2\overrightarrow{AM}-2\overrightarrow{AM}=\overrightarrow{0}\) (đpcm)
a: vecto AB=(-3;-4)
vecto AC=(3;-2)
Vì -3/3<>-4/2-2
nên A,B,C là ba đỉnh của 1 tam giác
b: Tọa độ G là:
x=(2-1+5)/3=2 và y=(3-1+1)/3=2
=>G(2;2) và A(2;3)
Tọa độ I là:
x=(2+2)/2=2 và y=(2+3)/2=2,5
c: K thuộc Oy nên K(0;y)
vecto AI=(0;-0,5); vecto AK=(-2;y-3)
Theo đề, ta có:
0/-2=-0,5/y-3
=>-0,5/y-3=0
=>Ko có K thỏa mãn
M là trung điểm BC.
\(\overrightarrow{CI}=\overrightarrow{CA}+\overrightarrow{AI}=-\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{AM}=-\overrightarrow{AC}+\dfrac{1}{6}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{6}\overrightarrow{AB}-\dfrac{5}{6}\overrightarrow{AC}\)
\(\overrightarrow{CK}=\overrightarrow{CA}+\overrightarrow{AK}=-\overrightarrow{AC}+\dfrac{1}{5}\overrightarrow{AB}=\dfrac{6}{5}\overrightarrow{CI}\)
Suy ra C, I, K thẳng hàng.