K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

\(\Rightarrow \tan A+\tan C=2\tan B\)

\(\Leftrightarrow \frac{\sin\left ( A+C \right )}{\cos A\cos C}=2\cdot\frac{\sin\left ( A+C \right )}{\cos B}\\\)

\(\Rightarrow \cos B=2\cos A\cos C\)

\(\Leftrightarrow 2\cos B=\cos(A-C)\)

\(\left (\cos A+\cos C \right )^2=\cos^2 A+\cos^2 C+2\cos A\cos C\\=\frac{\cos2A+\cos2C}{2}+1+\cos B\\=-\cos(B)\cos(A-C)+1+\cos B \\=-2\cos^2B+\cos B+1 \le \frac{9}{8}\\\Rightarrow \cos A+\cos C\le \frac{3\sqrt2}{4}\)

Chứng minh hoàn tất.

Ta có:

\(\dfrac{tanA}{tan^3B}=\dfrac{tanA}{tanB}.\dfrac{1}{tan^2B}=\dfrac{\dfrac{sinA}{cosA}}{\dfrac{sinB}{cosB}}.\dfrac{cos^2B}{sin^2B}\)

\(=\dfrac{sinA}{sinB}.\dfrac{cosB}{cosA}.\dfrac{cos^2B}{sin^2B}\)

\(=\dfrac{a}{b}.\dfrac{\dfrac{a^2+c^2-b^2}{2ac}}{\dfrac{b^2+c^2-a^2}{2bc}}.\dfrac{\left(\dfrac{a^2+c^2-b^2}{2ac}\right)^2}{1-\left(\dfrac{a^2+c^2-b^2}{2ac}\right)^2}\)

\(=\dfrac{a^2+c^2-b^2}{b^2+c^2-a^2}.\dfrac{\left(a^2+c^2-b^2\right)^2}{\left(2ac\right)^2-\left(a^2+c^2-b^2\right)^2}\)

\(=\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}.\dfrac{1}{\left[\left(a+c\right)^2-b^2\right]\left[b^2-\left(a-c\right)^2\right]}\)

\(=\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}.\dfrac{1}{\left(a+b+c\right)\left(a+c-b\right)\left(b+c-a\right)\left(a+b-c\right)}\)

Biến đổi tương tự, ta có BĐT tương đương với BĐT đã cho:

\(\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}+\dfrac{\left(a^2+b^2-c^2\right)^3}{a^2+c^2-b^2}+\dfrac{\left(b^2+c^2-a^2\right)^3}{a^2+b^2-c^2}\ge\left(a+b+c\right)\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\)

Ta có BĐT phụ sau:

\(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\ge xy+yz+xz\left(\text{*}\right)\) với \(x,y,z>0\)

Chứng minh:

Áp dụng BĐT cộng mẫu:

\(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}=\dfrac{x^4}{xy}+\dfrac{y^4}{yz}+\dfrac{z^4}{xz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\ge\dfrac{\left(xy+yz+xz\right)^2}{xy+yz+xz}=xy+yz+xz\)(đpcm)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z\)

Áp dụng BĐT \(\left(\text{*}\right)\), với đk \(\Delta ABC\) có ba góc nhọn, ta có:

\(\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}+\dfrac{\left(a^2+b^2-c^2\right)^3}{a^2+c^2-b^2}+\dfrac{\left(b^2+c^2-a^2\right)^3}{a^2+b^2-c^2}\ge\left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)+\left(a^2+b^2-c^2\right)\left(b^2+c^2-a^2\right)+\left(b^2+c^2-a^2\right)\left(a^2+c^2-b^2\right)\)

Ta chứng minh được:

\(\left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)+\left(a^2+b^2-c^2\right)\left(b^2+c^2-a^2\right)+\left(b^2+c^2-a^2\right)\left(a^2+c^2-b^2\right)=\left(a+b+c\right)\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\)

\(=-a^4-b^4-c^4+2a^2b^2+2b^2c^2+2a^2c^2\)

Vậy ta có BĐT cần chứng minh, đẳng thức xảy ra khi và chỉ khi \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)

15 tháng 10 2017

mình làm cách này là cách khj nào mà ko cách nào khác ms làm vậy thôi, áp dụng định lí sin và cosin trong tam giác

Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

15 tháng 10 2017

woooooooooo lớp 11

21 tháng 9 2023

a) \(cos\left(A+B\right)+cosC=0\)

\(\Leftrightarrow cos\left(\pi-C\right)+cosC=0\)

\(\Leftrightarrow-cosC+cosC=0\)

\(\Leftrightarrow0=0\left(đúng\right)\)

\(\Leftrightarrow dpcm\)

b) \(cos\left(\dfrac{A+B}{2}\right)=sin\dfrac{C}{2}\)

\(\Leftrightarrow cos\left(\dfrac{\pi-C}{2}\right)=sin\dfrac{C}{2}\)

\(\Leftrightarrow cos\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)=sin\dfrac{C}{2}\)

\(\Leftrightarrow sin\dfrac{C}{2}=sin\dfrac{C}{2}\left(đúng\right)\)

\(\Leftrightarrow dpcm\)

c) \(cos\left(A-B\right)+cos\left(2B+C\right)=0\left(1\right)\)

Ta có : \(A+B+C=\pi\)

\(\Leftrightarrow2B+C=\pi-A+B\)

\(\Leftrightarrow2B+C=\pi-\left(A-B\right)\)

\(\left(1\right)\Leftrightarrow cos\left(A-B\right)+cos\left[\pi-\left(A-B\right)\right]=0\)

\(\Leftrightarrow cos\left(A-B\right)-cos\left(A-B\right)=0\)

\(\Leftrightarrow0=0\left(đúng\right)\)

\(\Leftrightarrow dpcm\)

31 tháng 3 2017

undefined

Ảnh của A, B, C lần lượt là trung điểm A', B', C' của các cạnh HA, HB, HC.

31 tháng 3 2017

undefined

Ảnh của A, B, C lần lượt là trung điểm A', B', C' của các cạnh HA, HB, HC.

6 tháng 10 2019

đề sai hay sao á

6 tháng 10 2019

nếu \(\frac{tanB}{tanC}=\frac{sin^2B}{sin^2C}\) thì làm kiểu này
\(\frac{tanB}{tanC}=\frac{sin^2B}{sin^2C}=>\frac{sinB.cosC}{cosB.sinC}-\frac{sin^2B}{sin^2C}=0 \)
\(\frac{sinB}{sinC}\left(\frac{cosC}{cosB}-\frac{sinB}{sinC}\right)=0=>sinB=0\left(bỏ\right)\)
\(\frac{cosC}{cosB}-\frac{sinB}{sinC}=0=>sinC.cosC=sinB.cosB\)
\(sin2C=sin2B=>B=C\) hoặc \(\widehat{B}+\widehat{C}=\frac{\pi}{2}\)
tam giác vuông hoặc cân tại A

1) ta co ket qua nhu sau:
sinAcosA+cosAcosB = sinAsinB+sinAcosA
<=> cosAcosB-sinAsinB=0
<=>cos(A+B)=0
<=> -cosC=0 (vi A+B+C=180)
hay cosC=0 => C=90