K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

làm câu a thôi nha

A B C H K

a) trên tia HB lấy HK sao cho HK = HC  

xét tam giác ACH và tam giác AKH có :

AH ( cạnh chung )

\(\widehat{AHC}=\widehat{AHK}=90^o\)

HC = HK ( theo cách vẽ )

suy ra : tam giác ACH = tam giác AKH ( c.g.c )

=> HC = HK ( hai cạnh tương ứng )

=> \(\widehat{C}=\widehat{AKH}\)( hai góc tương ứng )

=> AC = AK ( hai cạnh tương ứng )

tam giác AKB có \(\widehat{AKH}\)là góc ngoài tại đỉnh K có :

\(\widehat{AKH}\)\(\widehat{KAB}+\widehat{B}\)

Mà \(\widehat{C}=2.\widehat{B}\)hay \(\widehat{AKH}\)\(2.\widehat{B}\)

\(\Rightarrow2.\widehat{B}=\widehat{KAB}+\widehat{B}\)

\(\Rightarrow\widehat{KAB}=\widehat{B}\)

=> tam giác KAB cân tại K 

=> KA = KB 

=> AC + CH = KB + HK = BH

b) 

7 tháng 2 2018

A B C K K' H

Ta có: \(AC-AB>CK-BH\)    (*)

\(\Leftrightarrow AC+BH>AB+CK\)

\(\Leftrightarrow\left(AC+BH\right)^2>\left(AB+CK\right)^2\)

\(\Leftrightarrow AC^2+BH^2+2.AC.BH>AB^2+CK^2+2.AB.CK\)

\(\Leftrightarrow AC^2+BH^2+4S_{ABC}>AB^2+CK^2+4S_{ABC}\)

\(\Leftrightarrow AC^2+BH^2>AB^2+CK^2\)

\(\Leftrightarrow AK>AH\)  (**)

Xét tam giác ABC có \(\widehat{B}>\widehat{C}\Rightarrow AC>AB\)

Trên AC lấy điểm B' sao cho AB' = AB \(\Rightarrow AB'< AC\Rightarrow\) B' nằm giữa A và C.  (1)

Kẻ B'K' vuông góc AB tại K'.Suy ra B'K' // KC   (2)

Từ (1) và (2) suy ra K' nằm giữa A và K hay AK' < AK

Ta thấy ngay \(\Delta ABH=\Delta ACK'\)  (Cạnh huyền - góc nhọn) 

\(\Rightarrow AH=AK'\Rightarrow AK>AH\)

Vậy (**) đúng hay (*) đúng.

12 tháng 2 2018

A B C K H

Ta có tam giác AKC vuông tại K

=> AC là cạnh lớn nhất (nhận xét quan hệ giữa cạnh đối diện với góc lớn hơn)

=>AC > CK

Ta có tam giác ABH vuông tại H

=> AB là cạnh lớn nhất (nhận xét quan hệ giữa cạnh đối diện với góc lớn hơn)

=> AB > BH

 Có: AC>CK;

AB>BH (cmt)

=> AC-AB > CK-BH

29 tháng 5 2018

a )

Xét : \(\Delta ABHva\Delta ADH,co:\)

\(\widehat{H_1}=\widehat{H_2}=90^o\left(gt\right)\)

BH = HD ( gt )

AH là cạnh chung 

Do do : \(\Delta ABH=\Delta ADH\left(c-g-c\right)\)

b ) 

Ta có : \(\Delta ABD\) là tam giác đều ( cmt ) 

= > \(\widehat{BAD}=60^o\) ( trong tam giác đều mỗi góc bằng 60o ) 

Ta có : \(\widehat{CAD}=\widehat{BAC}-\widehat{BAD}=90^o-60^o=30^o\) ( tia AD nằm giữa 2 tia AB và AC )

Hay  :  \(\widehat{EAD}=30^o\left(E\in AC\right)\)  

Ta có :\(\widehat{ADH}=60^o\) ( \(\Delta ABD\) là tam giác đều ) 

Ta có : \(\widehat{HAD}=\widehat{H_2}-\widehat{ADH}=90^o-60^o=30^o\)

Ta có : \(AH\perp BC\) và  \(ED\perp BC\)

= > \(AH//ED\) ( vì cùng vuông góc với BC ) 

=> \(\widehat{HAD}=\widehat{ADE}=30^o\) ( 2 góc so le trong của AH//ED ) 

=> \(\Delta AED\) là tam giác cân , và cân tại E ( vì có 2 góc ở đáy bằng nhau ( \(\widehat{HAD}=\widehat{ADE}=30^o\)) ) 

c ) mình không biết chứng minh AH = HF = FC  nha , mình chỉ chứng minh \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) thôi nha :

Ta có : \(\Delta ABC\) vuông tại A  và AH là đường cao  ( gt ) 

= > \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)  ( hệ thức lượng trong tam giác vuông ) 

 Hình mình vẽ hơi xấu , thông cảm nha 

HỌC TỐT !!! 

  

29 tháng 5 2018

a) Tam giác ABC có AH là đường cao đồng thời là trung tuyến ( BH=HD)

\(\rightarrow\) tam giác ABD cân tại A

Mà  \(\widehat{B}\) = 60 độ \(\rightarrow\) tam giác ABD đều

b) Tam giác ABD đều nên \(\widehat{ADB}\) = \(\widehat{BAD}\) = 60 độ

\(\rightarrow\) \(\widehat{ADE}\) = \(\widehat{HDE}\) - \(\widehat{ADB}\) = 30 độ

Tương tự có \(\widehat{DAE}\) = 30độ

\(\Rightarrow\) Tam giác ADE cân tại E

c1) Xét tam giác AHC và tam giác CFA

           \(\widehat{ACF}\) = \(\widehat{CAF}\) = 30độ

           AC chung

\(\rightarrow\) tam giác bằng nhau ( cạnh huyền - góc nhọn)

\(\rightarrow\) AH = FC

Ta có \(\widehat{BAD}\) = 60 độ và \(\widehat{BAH}\) = 30 độ

\(\rightarrow \) \(\widehat{HAD}\) = 30 độ hay \(\widehat{HAF}\) = 30 độ

 ____Phần còn lại cm tam giác HAF cân là ra 

Mk bận chút việc nên ms làm đến đây thui nka ~

1 tháng 3 2020

Bạn tự vẽ hình nha 

1. Xét tam giác EBH có: BE=BH (gt) -> tan giác EBH cân tại B -> góc BEH = góc BHE

Ta lại có góc ABH = góc BEH + góc BHE (góc ngoài của tam giác EBH); Mà góc BEH = góc BHE (cmt) -> góc ABH = 2 góc BEH; Mà góc ABH = 2 góc ACB (gt)-> góc BEH = góc ACB ( đpcm)

2. Ta có: góc BHE = góc DHC (2 góc đối đỉnh); Mà góc BHE = góc BEH (cmt) và góc BEH = góc ACB (cmt) => góc DHC = góc ACB -> tam giác DHC cân tại D -> DH = DC ( 2 cạnh tương ứng)

Ta có: tam giác AHC vuông tại H -> góc HAC +góc ACB = 90 độ (2 góc ở đáy tam giác vuông ); Mà  góc AHD + góc DHC = 90 độ và góc ACB = góc DHC (cmt) -> góc HAC = góc AHD -> tam giác AHD cân tại D => DA = DH (2 cạnh tương ứng ) 

Vậy DH=DC=DA

3. Ta có tam giác ABB' có: BH = B'H ( H là trung điểm BB') -> AH là đường trung tuyến lại vừa là đường cao -> tam giác ABB' cân tại A -> góc ABH = góc AB'H (2 góc ở đáy)

Xét tam giác AB'C có: góc AB'H = góc B'AC + góc ACB' (góc ngoài); Mà góc ABH = góc AB'H (cmt) -> góc ABH = góc B'AC + góc ACB ; Mà góc ABH = 2 góc ACB'

-> góc B'AC = góc ACB' => tam giác AB'C cân tại B'

4. Bạn vẽ lại hình nha: giả sử tam giác ABC vuông tại A

Xét tam giác ADE và tam giác ABC có: góc A chung và góc BEH = góc ACB (cmt) -> hai tam giác đồng dạng theo trường hợp (g.g) -> góc ADE = góc ABC (2 góc tương ứng) (1) 

Ta có : góc HAD = 90 độ - góc C ( tam giác HAC vuông tại H); Mà góc ABC = 90 độ - góc C ( tam giác ABC vuông tại A) -> góc HAD = góc ABC (2)

Từ (1) và (2) -> góc ADE = góc HAD; Mà góc HAD = góc AHD nên suy ra tam giác AHD đều 

Xét tam giác ADE và tâm giác HAC có: góc EAD = góc CHA = 90 độ (gt); góc ADE = góc HAC (cmt); AD = AH (tam giác AHD đều) => tam giác ADE = tam giác HAC theo trường hợp (g.c.g)

=> DE = AC (2 cạnh tương ứng) => DE2 = AC2 ; Mà AC2 = BC2 - AB2 (định lí Py-ta-go trong tam giác ABC) => DE2 = BC2 - AB2 (đpcm) 

Học tốt nhé 🙋‍♀️🙋‍♀️🙋‍♀️💗💗💗

22 tháng 4 2019

a, Xét tam giác HAB có: AB= AH2 + BH2 => AB= 42 + 22 => AB= 16 + 4 = 20 => AB = \(\sqrt{20}\)

 Xét tam giác HAC có: AB= HA+ HC=> AC= 4+ 8=> AC= 16 + 64 = 80 => AC = \(\sqrt{80}\)

b, Ta có: AB < AC\(\left(\sqrt{20}< \sqrt{80}\right)\) 

=>\(\widehat{B}< \widehat{C}\:\)(Quan hệ giữa cạnh và góc đối diện)

22 tháng 4 2019

Á mk nhầm nha \(\widehat{C}< \widehat{B}\)

#Hk_tốt

#Ngọc's_Ken'z

10 tháng 11 2016

em gửi bài qua fb thầy HD cho, tìm fb của thầy bằng sđt: 0975705122, ở đây thầy không vẽ hình được

Bài 1: 

a: XétΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔDBC và ΔECB có 

DB=EC

BC chung

DC=EB

Do đó: ΔDBC=ΔECB

Suy ra: \(\widehat{KDB}=\widehat{KEC}\)

Xét ΔKDB và ΔKEC có 

\(\widehat{KDB}=\widehat{KEC}\)

BD=CE

\(\widehat{KBD}=\widehat{KCE}\)

Do đó: ΔKDB=ΔKEC