Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SABC=\(\frac{AC.BH}{2}\)=\(\frac{AB.CK}{2}\)
=>AC.BH=AB.CK(1)
Vì tam giác ABC có Góc B>A=>Ac>AB(2)(góc vá cạnh đối diện)
Từ 1,2 =>BH<CK
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
góc BAH chung
Do đó: ΔABH\(\sim\)ΔACK
b: Xét ΔAKH và ΔACB có
AK/AC=AH/AB
góc KAH chung
Do đó: ΔAKH\(\sim\)ΔACB
Suy ra: \(\widehat{AKH}=\widehat{ACB}=40^0\)
a: Ta có: ΔBKC vuông tại K
mà KM là trung tuyến
nên KM=BC/2
Ta có: ΔBHC vuông tại H
mà HM là trung tuyến
nên HM=BC/2
=>HM=KM
b: KẻMN vuông góc với HK
Vì ΔMHK cân tại M có MN là đường cao
nên N là trung điểm của HK
Xét hình thang BDEC có
M là trung điểm của B
MN//BD//EC
DO đó:N là trung điểm của DE
=>DN=NE
=>DK=HE
B K E C H A D M
a)DC//BE (cùng vuông góc với AC);DB//CE (cùng vuông góc với AB) => là hình bình hành
b) hình bình hình thì 2 đường chéo giao nhau tại trung điểm mỗi đường hay DE cắt BC tại M và M là trung điểm DE
Để DE đi qua A tức là D;E;A thằng hàng
mà AE là một đường cao hay AE vuông góc BC nên D;E;A thẳng hàng tức là DE vuông góc với BC
hình bình hành có 2 đường chéo vuông góc là hình thoi
c) tứ giác ABDC có góc DBA +góc DCA =180 nên góc BAC+ góc BDC=180
Mượn hình của bạn Manh nhé!
a) Ta có: DB // CK ( \(\perp\)AB)
=> DB // CE (1)
BH // DC ( \(\perp\) AC )
=> DC // BE (2)
Từ (1) ; (2) => DBEC là hình bình hành.
b) +) Theo câu a) DBEC là hình bình hành
=> Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường.
Mà M là trung điểm BC => M là trung điểm DE.
+) CK; BH là hai đường cao của \(\Delta ABC\) và CK ; BH cắt nhau tại E.
=> E là trực tâm của \(\Delta ABC\)
=> AE là đường cao hạ từ A. (3)
Theo giả thiết DE qua A mà DE cắt BC tại M là trung điểm cạnh BC
=> AE qua trung điểm của cạnh BC
=> AE là đường trung tuyến của \(\Delta ABC\) (4)
Từ (3); (4) => \(\Delta ABC\) cân tại A
c) Em tham khảo bài làm bạn Manh.
minh gợi ý theo cách của mình là:
A B C M F Vì góc BAH là phân giác nên ta có:
\(\frac{AB}{BE}=\frac{AH}{HE}\) ( hãy chứng minh \(\frac{AB}{BE}=\frac{AF}{EC}\)nếu họ nói chứng minh CF ss AE thì ta có : \(\frac{AH}{AF}=\frac{EH}{EC}\)hay \(\frac{AH}{HE}=\frac{ÀF}{EC}\)) vì hai tỉ số trên cùng bằng \(\frac{AH}{HE}\)sau đó tự chứng minh ....