Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo mối quan hệ giữa cạnh và góc trong tam giác:
\(\widehat{B}>\widehat{C}\Rightarrow AC>AB\)
b) Dễ thấy \(\Delta ABM=\Delta DCM\left(c-g-c\right)\Rightarrow AB=CD\)
Do AC > AB nên AC > CD.
Xét tam giác ACD có AC > CD nên \(\widehat{CDA}>\widehat{CAD}\)
c) Do \(\Delta ABM=\Delta DCM\Rightarrow\widehat{CDA}=\widehat{BAD}\)
Vậy nên \(\widehat{BAM}>\widehat{CAM}\)
Suy ra tia phân giác AJ nằm trong góc BAM hay nằm ngoài góc CAM.
tự vẽ hik nhk!
a)xét tam giác AMB và tam giác DMC có:
AM= MD(gt)
góc AMB=CMD(đđ)
BM=MC(gt)
suy ra hai tam giac bang nhau
b)ta có tam giác abm =tam giac dcm
suy ra ab=cd
xet tam giacacm và tam giác cmd có
am=md
cm:cạnh chung
ac=cd(=ab)
suy ra hai tam giac bang nhau
suy ra goc acm=dcm
suy ra cb la tia pg cua acd
a) Xét tam giác ABM và tam giác DCM có:
AM = DM (gt)
BM = MC (gt)
góc BMA = góc DMC (2 góc đối đỉnh)
=> tam giác ABM = tam giác DCM (c.g.c)
b) Vì tam giác ABM = tam giác DCM (cmt)
=> góc ABM = góc DCM (2 góc tương ứng)
mà 2 góc này so le trong
=> AB//DC
c) Xét tam giác ABM và tam giác ACM có:
AB = AC (gt)
BM = MC (gt
AM là cạnh chung
=> tam giác ABM bằng tam giác ACM (c.c.c)
=> góc BMA bằng góc AMC
=> góc BMA = góc AMC = 1/2(góc BMA + góc AMC)
mà góc BMA + góc AMC = 180o (2 góc kề bù)
=> góc BMA = góc AMC = 1/2.180o = 90o
=> AM vuông góc với BC
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
Bài 2: Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Dang Khanh Ngoc - Toán lớp 7 - Học toán với OnlineMath
B C A M D W
a) Theo đề bài, ta có:
\(\widehat{B}\)>\(\widehat{C}\)
Mà đối diện với \(\widehat{B}\) là cạnh AC, đối diện với \(\widehat{C}\) là cạnh AB
=>AC>AB
b) Xét \(\Delta\)AMB và \(\Delta\)DMC, ta có:
AM=MD (gt)
MB=MC (gt)
\(\widehat{AMB}\)=\(\widehat{CMD}\) (đối đỉnh)
Do đó: \(\Delta\)AMB=\(\Delta\)DMC (c-g-c)
=> AB=CD (2 cạnh tương ứng)
mà AC>AB
nên AC>CD
=> \(\widehat{CDA}\)=\(\widehat{CAD}\)