\(\widehat{B}>\widehat{C}\), BH và CK lần lượt là hai đường cao. C...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

A B C K K' H

Ta có: \(AC-AB>CK-BH\)    (*)

\(\Leftrightarrow AC+BH>AB+CK\)

\(\Leftrightarrow\left(AC+BH\right)^2>\left(AB+CK\right)^2\)

\(\Leftrightarrow AC^2+BH^2+2.AC.BH>AB^2+CK^2+2.AB.CK\)

\(\Leftrightarrow AC^2+BH^2+4S_{ABC}>AB^2+CK^2+4S_{ABC}\)

\(\Leftrightarrow AC^2+BH^2>AB^2+CK^2\)

\(\Leftrightarrow AK>AH\)  (**)

Xét tam giác ABC có \(\widehat{B}>\widehat{C}\Rightarrow AC>AB\)

Trên AC lấy điểm B' sao cho AB' = AB \(\Rightarrow AB'< AC\Rightarrow\) B' nằm giữa A và C.  (1)

Kẻ B'K' vuông góc AB tại K'.Suy ra B'K' // KC   (2)

Từ (1) và (2) suy ra K' nằm giữa A và K hay AK' < AK

Ta thấy ngay \(\Delta ABH=\Delta ACK'\)  (Cạnh huyền - góc nhọn) 

\(\Rightarrow AH=AK'\Rightarrow AK>AH\)

Vậy (**) đúng hay (*) đúng.

12 tháng 2 2018

A B C K H

Ta có tam giác AKC vuông tại K

=> AC là cạnh lớn nhất (nhận xét quan hệ giữa cạnh đối diện với góc lớn hơn)

=>AC > CK

Ta có tam giác ABH vuông tại H

=> AB là cạnh lớn nhất (nhận xét quan hệ giữa cạnh đối diện với góc lớn hơn)

=> AB > BH

 Có: AC>CK;

AB>BH (cmt)

=> AC-AB > CK-BH

5 tháng 2 2018

Câu hỏi của duyvodich10 - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

19 tháng 4 2019

BTS là cục cứt chó j , nó đéo xứng làm cục cứt của the coconut tao

con kia là đồ giả mạo 

Mà ông Duy có j hay đâu mà bọn m giả lắm thế

Bài 1: 

a: XétΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔDBC và ΔECB có 

DB=EC

BC chung

DC=EB

Do đó: ΔDBC=ΔECB

Suy ra: \(\widehat{KDB}=\widehat{KEC}\)

Xét ΔKDB và ΔKEC có 

\(\widehat{KDB}=\widehat{KEC}\)

BD=CE

\(\widehat{KBD}=\widehat{KCE}\)

Do đó: ΔKDB=ΔKEC

28 tháng 2 2018

làm câu a thôi nha

A B C H K

a) trên tia HB lấy HK sao cho HK = HC  

xét tam giác ACH và tam giác AKH có :

AH ( cạnh chung )

\(\widehat{AHC}=\widehat{AHK}=90^o\)

HC = HK ( theo cách vẽ )

suy ra : tam giác ACH = tam giác AKH ( c.g.c )

=> HC = HK ( hai cạnh tương ứng )

=> \(\widehat{C}=\widehat{AKH}\)( hai góc tương ứng )

=> AC = AK ( hai cạnh tương ứng )

tam giác AKB có \(\widehat{AKH}\)là góc ngoài tại đỉnh K có :

\(\widehat{AKH}\)\(\widehat{KAB}+\widehat{B}\)

Mà \(\widehat{C}=2.\widehat{B}\)hay \(\widehat{AKH}\)\(2.\widehat{B}\)

\(\Rightarrow2.\widehat{B}=\widehat{KAB}+\widehat{B}\)

\(\Rightarrow\widehat{KAB}=\widehat{B}\)

=> tam giác KAB cân tại K 

=> KA = KB 

=> AC + CH = KB + HK = BH

b)