Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tam giác t1: Polygon A, B, C Đoạn thẳng c: Đoạn thẳng [A, B] Đoạn thẳng a: Đoạn thẳng [B, C] Đoạn thẳng b: Đoạn thẳng [C, A] Đoạn thẳng j: Đoạn thẳng [B, D] Đoạn thẳng k: Đoạn thẳng [A, D] Đoạn thẳng l: Đoạn thẳng [A, H] Đoạn thẳng n: Đoạn thẳng [D, K] Đoạn thẳng p: Đoạn thẳng [K, I] Đoạn thẳng q: Đoạn thẳng [E, H] Đoạn thẳng r: Đoạn thẳng [E, K] A = (2.07, 6.63) A = (2.07, 6.63) A = (2.07, 6.63) B = (-3.47, -9.98) B = (-3.47, -9.98) B = (-3.47, -9.98) C = (20.7, -9.89) C = (20.7, -9.89) C = (20.7, -9.89) Điểm H: Giao điểm đường của i, a Điểm H: Giao điểm đường của i, a Điểm H: Giao điểm đường của i, a Điểm I: Giao điểm đường của h, i Điểm I: Giao điểm đường của h, i Điểm I: Giao điểm đường của h, i Điểm D: Giao điểm đường của f, h Điểm D: Giao điểm đường của f, h Điểm D: Giao điểm đường của f, h Điểm K: Giao điểm đường của m, a Điểm K: Giao điểm đường của m, a Điểm K: Giao điểm đường của m, a Điểm E: I đối xứng qua a Điểm E: I đối xứng qua a Điểm E: I đối xứng qua a
a) Xét tam giác vuông BHI có \(\widehat{BIH}=90^o-\widehat{IBH}\)
Xét tam giác vuông ABD có \(\widehat{BDB}=90^o-\widehat{ABD}\)
Lại do BD là phân giác nên \(\widehat{IBH}=\widehat{ABD}\). Vậy thì \(\widehat{BIH}=\widehat{ADI}\)
Lại có \(\widehat{BIH}=\widehat{AID}\) (Hai góc đối đỉnh) nên \(\widehat{ADI}=\widehat{AID}\) hay tam giác AID cân tại A.
b) Do BD là phân giác nên DA = DK (Tính chất điểm thuộc tia phân giác)
Lại theo câu a, tam giác ADI cân tại A nên AD = AI. Vậy thì AI = DK
Ta có AH// DK (Cùng vuông góc với BC) nên \(\widehat{AID}=\widehat{IDK}\) (so le trong)
Vậy ta có \(\Delta AID=\Delta KDI\left(c-g-c\right)\)
c) Xét tam giác IEK có IH = HE nên KH là trung tuyến. Lại có KH cũng là đường cao. Vậy tam giác IEK cân tại K hay \(\widehat{HIK}=\widehat{HEK}\)
Lại có \(\widehat{HIK}=\widehat{IKD}\) (so le trong) nên \(\widehat{HEK}=\widehat{IKD}\)
Theo câu b, \(\Delta AID=\Delta KDI\Rightarrow\widehat{DAI}=\widehat{IKD}\)
Vậy nên \(\widehat{HEK}=\widehat{IAD}\)
Xét tứ giác ADKE có DK // AE nên nó là hình thang. Lại có \(\widehat{HEK}=\widehat{IAD}\) nên ADKE là hình thang cân.
(Có các cách chứng minh khác nhưng vì mới đầu lớp 8 nên cô sử dụng kiến thức liên quan đã học)
a: Ta có: \(\widehat{BIH}+\widehat{IBH}=90^0\)
mà \(\widehat{AID}=\widehat{BIH}\)
nên \(\widehat{AID}+\widehat{DBC}=90^0\)
mà \(\widehat{ADI}+\widehat{ABD}=90^0\)
và \(\widehat{DBC}=\widehat{ABD}\)
nên \(\widehat{AID}=\widehat{ADI}\)
hay ΔAID cân tại I
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC