Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC cân tại A nên ABC = ACB =\(90-\frac{BAC}{2}=90-\frac{70}{2}=90-35=55\)độ
BM, CM lần lượt là phân giác của góc B, góc C nên CBM = BCM =\(\frac{1}{2}ABC\left(=\frac{1}{2}ACB\right)\)\(\frac{55}{2}\)độ
Tam giác BCM có: BCM + CBM + BMC = 180 độ \(\Rightarrow\)\(2\times\frac{55}{2}\)+ BMC = 180 độ
Góc BMC = 180 -55= 125 độ
Bài 1:
a: XétΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{KDB}=\widehat{KEC}\)
Xét ΔKDB và ΔKEC có
\(\widehat{KDB}=\widehat{KEC}\)
BD=CE
\(\widehat{KBD}=\widehat{KCE}\)
Do đó: ΔKDB=ΔKEC
Xét tam giác ABC có :
A + ABC + ACB = 180 *
=> ABC + ACB = 180* - a
Mà BC là phân giác ABC
=> ABD = CBD = \(\frac{1}{2}ABC\)
Mà CE là phân giác ACB
=> ACE = BCE = \(\frac{ACB}{2}\)
=> ECB + DBC = \(\frac{ACB+ABC}{2}\)= \(\frac{180-a}{2}\)
Xét tam giác OBC có :
OBC + OCB + BOC = 180*
=> BOC = 180* - ( OBC + OCB)
=> BOC = 180* - \(\frac{180-a}{2}\)
=> BOC =\(\frac{a}{2}\)(dpcm)
a) Xét tam giác ABC có
(góc) A+B+C=180o(định lí tổng 3 góc của 1 tam giác)
hay 60o+ABC+ACB=180o
(góc) ABC+ACB=180o-60o=120o
Ta có BD là tia phân giác của góc ABC,CE là tia phân giác của góc ACB
=> (góc) DBC+DCB=ABC + ACB /2=120o-60o=60o
Xét tam giác DBC có
(góc) BDC+ DBC+DCB=180o(Định lí tổng 3 góc của một tam giác)
hay (góc) BDC+60o=180o
(góc) BDC =180o-60o=120o
:3
câu b đâu òi