Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
o A B C D E M N 120 30 30
Vì hai đường phân giác \(BD,CE\)cắt nhau tại \(O\)nên \(O\)là tâm đường tròn ngoại tiếp tam giác \(ABC\)
Do góc \(\widehat{BOC}\)là góc ở tâm cùng chắn cung \(\widebat{BC}\)với góc \(\widehat{BAC}\)Nên \(\widehat{BOC}=2\widehat{BAC}=120^0=120^0\)
mà \(\widehat{BOM}+\widehat{MON}+\widehat{NOC}=\widehat{BOC}\Rightarrow\widehat{MON}=\widehat{BOC}-\widehat{NOC}-\widehat{MOB}=120^0-30^0-30^0=60^0\)
A B C D E
Trên nửa mặt phẳng bờ BC dựng \(\Delta\)BCE đều
Xét \(\Delta\)BAE và \(\Delta\) CAE có:
AB = AC (\(\Delta\)ABC cân)
AE: chung
EB = EC (\(\Delta\)BCE đều)
\(\Rightarrow\)\(\Delta\)BAE = \(\Delta\) CAE (c.c.c)
\(\Rightarrow\)BAE = CAE (2 cạnh tương ứng)
\(\Rightarrow\)AE là phân giác BAC
\(\Rightarrow\)BAE = CAE = BAC : 2 = 20o : 2 = 10o
Vì \(\Delta\) ABC cân ở A \(\Rightarrow\)BCA = (180o - BAC) : 2 = 80o
Ta có: \(\Delta\)BCE đều \(\Rightarrow\)ECB = 60o
Có: ACE + ECB = ACB
\(\Rightarrow\)ACE = ACB - ECB = 80o - 60o = 20o
\(\Rightarrow\)ACE = CAD
Xét \(\Delta\)DAC và \(\Delta\)ECA có:
AC: chung
ACE = CAD (cmt)
EC = AD (= BC)
\(\Rightarrow\)\(\Delta\)DAC = \(\Delta\)ECA (c.g.c)
\(\Rightarrow\)EAC = ECA = 10o (2 góc tương ứng)
Ta có: BDC = DAC + ECA = 20o + 10o =30o
Vậy BDC = 30o
Trần Nguyễn Hoài Thư
Bạn tự vẽ hình ( hình dễ lắm nhé )
Giải
Xét \(\Delta ABC\) có :
\(\widehat{BAC}+\widehat{CBA}+\widehat{ACB}=180^O\)
\(\Rightarrow\widehat{BAC}=180^O-80^O-30^O\)
\(\Rightarrow\widehat{BAC}=70\)
Ta có : AD là tia phân giác của \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{70^O}{2}=35^O\)
Xét \(\Delta ABD\) có :
\(\widehat{ABD}+\widehat{BAD}+\widehat{BDA}=180^O\)
\(\Rightarrow\widehat{ADB}=180^O-35^O-80^O=65^O\) ( Vì \(\widehat{BAD}=35^O;\widehat{ABD}=80^O\) (CMT )
CMTT ta có :
\(\widehat{ADC}=180^O-30^O-35^O=115^O\)
Vậy \(\widehat{ADC}=115^O\) và \(\widehat{ADB}=65^O\)
Chúc bạn học tốt