K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: D và M đối xứng nhau qua AB

nen AD=AM

=>ΔADM cân tại A

mà AB là đường cao

nên AB là phân giác của góc DAM(1)

Ta có: M và E đối xứng nhau qua AC
nên AC là đường trung trực của ME

=>AM=AE
=>ΔAME cân tại A
mà AC là đường cao

nên AC là phân giác của góc MAE(2)

Ta có: AD=AM

AM=AE
Do đó: AD=AE

b: Từ (1) và (2) suy ra góc DAE=2xgóc BAC=140 độ

28 tháng 4 2017

a) D đx với m qua AB

=> AB là trung trực của MD

=> AD=AM

E đx với M qua AC

=> AM=AE

=> AD=AE

b) AD=AM => tam giác ADM cân

=>góc DAB =góc MAB

tam giác AME cân

=> góc MAC= góc CAE

do đó: DAB+MAB+MAC+CAE=2(MAB+MAC)=2.70=140 độ

hay góc DAE=140 độ

29 tháng 6 2017

Đối xứng trục

21 tháng 9 2019

tự kẻ hình :

AB là đường trung trực của MD (gt)

=> AM = AD (đl)      (1)

AC là đường trung trực của EM (gt)

=> AE = AM (đl)      (2)

(1)(2) => AE = AD 

21 tháng 9 2019

A B C M D E 1 2 3 4

a. Vì D đối xứng với M qua trục AB

\(\Rightarrow\) AB là đường trung trực MD.

\(\Rightarrow\) AD = AM (tính chất đường trung trực) (1)

\(\Rightarrow\) Vì E đối xứng với M qua trục AC

\(\Rightarrow\) AC là đường trung trực của ME

\(\Rightarrow\) AM = AE ( tính chất đường trung trực) (2)

\(\Rightarrow\) Từ (1) và (2) suy ra : AD = AE

b ) AD = AM suy ra \(\Delta AMD\) cân tại A có \(AB\perp MD\)

nên AB cũng là đường phân giác của góc MAD

\(\Rightarrow\widehat{A_1}=\widehat{A}_2\)

AM = AE suy ra \(\Delta AME\) cân tại A có \(AC\perp ME\) nên AC cũng là đường phân giác của \(\widehat{MAE}\)

\(\Rightarrow\widehat{A}_3=\widehat{A}_4\)

\(\widehat{DAE}=\widehat{A}_1+\widehat{A}_2+\widehat{A}_3+\widehat{A}_4\)

                \(=2\left(\widehat{A}_2+\widehat{A}_3\right)=2\widehat{BAC}=2.70^o=140^o\)

Chúc bạn học tốt !!!

a: Ta có: M và D đối xứng nhau qua AB

nên AB là đường trung trực của MD

=>AM=AD

=>ΔAMD cân tại A

mà AB là đường cao

nên AB là phân giác của góc MAD(1)

Ta có: M và E đối xứng nhau qua AC

nên AC là đường trung trực của ME

=>AM=AE
=>ΔAME cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc MAE(2)

Ta có: AD=AM

AE=AM

Do đó: AE=AD

b: Từ (1) và (2) suy ra góc DAE=2xgóc BAC=140 độ

=>góc AED=(180-140)/2=20 độ

25 tháng 7 2016

Do lỗi Online Math nên mình không gửi câu trả lời được. Mình phải dùng paint .

Áp suất

Áp suất

26 tháng 7 2016

lỗi j thế bà

13 tháng 11 2021

a: Ta có: D đối xứng với M qua AB

nên AD=AM(1)

Ta có: E đối xứng với M qua AC

nên AM=AE(2)

Từ (1) và (2) suy ra AD=AE

6 tháng 5 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

AD = AM suy ra ∆ AMD cân tại A có AB ⊥ MD nên AB cũng là đường phân giác của ∠ (MAD)

⇒ ∠ A 1 =  ∠ A 2

AM = AE suy ra  ∆ AME cân tại A có AC ⊥ ME nên AC cũng là đường phân giác của  ∠ (MAE)

⇒  ∠ A 3  =  ∠ A 4

∠ (DAE) =  ∠ A 1  +  ∠ A 2  +  ∠ A 3  +  ∠ A 4  = 2(  ∠ A 2 +  ∠ A 3  ) = 2 ∠ (BAC) = 2. 70 0  =  140 0