\(\widehat{A}>\widehat{B}\) .Trên BC lấy H sao cho
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

minh gợi ý theo cách của mình là: 

A B C M F Vì góc BAH là phân giác nên ta có: 

\(\frac{AB}{BE}=\frac{AH}{HE}\)   ( hãy chứng minh \(\frac{AB}{BE}=\frac{AF}{EC}\)nếu họ nói chứng minh CF ss AE thì ta có :  \(\frac{AH}{AF}=\frac{EH}{EC}\)hay \(\frac{AH}{HE}=\frac{ÀF}{EC}\)) vì hai tỉ số trên cùng bằng \(\frac{AH}{HE}\)sau đó tự chứng minh ....

25 tháng 2 2020

a) Xét tứ giác AMDN, ta có:

^A = ^N = ^M = 90o (gt)

Vậy tứ giác AMDN là hình chữ nhật.

b) *Xét △ABD, ta có:

K là trung điểm BD (gt)

I là trung điểm AD (gt)

⇒ KI là đường trung bình của △ABD.

⇒ KI // AB và KI = 12

AB. (1)

*Ta có:

DN ⊥ AC (gt)

AB ⊥ AC (△ABC vuông tại A)

⇒ DN // AB. (2)

Từ (1) và (2) suy ra KI // DN

*Xét △v ABC, ta có:

BD = CD (gt)

⇒ AD là đường trung tuyến

⇒ AD = BD = 12

AC

⇒ △ABD cân tại D

Mà DM ⊥ AB

⇒ DM là đường cao đồng thời là đường trung tuyến

⇒ MA = MB

*Ta có:

MA = 12

AB (cmt)

KI = 12

AB (cmt)

⇒MA = KI

Mà MA = DN (AMDN là hình chữ nhật)

Nên KI = DN

*Ta có:

KI // DN (cmt)

KI = DN (cmt)

Vậy INDK là hình bình hành

c) *Ta có:

KI //AM (KI // AB)

DM ⊥ AM (gt)

⇒KI ⊥ DM

*Xét tứ giác DIMK, ta có:

KI ⊥ DM (cmt)

Vậy DIMK là hình thoi.

d) Xét hình chữ nhật AMDN, ta có:

MN, AD là hai đường chéo

Mà I là trung điểm AD (gt)

Nên I là trung điểm MN

Vậy M, N đối xứng với nhau qua I.

11 tháng 5 2018

a)  Xét  \(\Delta ABC\)và   \(\Delta MDC\)có:

      \(\widehat{C}\) chung

     \(\widehat{CAB}=\widehat{CMD}=90^0\)

suy ra:   \(\Delta ABC~\Delta MDC\)(g.g)

b)  Xét  \(\Delta BMI\)và    \(\Delta BAC\)có:

         \(\widehat{B}\)chung

        \(\widehat{BMI}=\widehat{BAC}=90^0\) 
suy ra:   \(\Delta BMI~\Delta BAC\) (g.g)

\(\Rightarrow\)\(\frac{BI}{BC}=\frac{BM}{BA}\) 

\(\Rightarrow\)\(BI.BA=BC.BM\)

c)    \(\frac{BI}{BC}=\frac{BM}{BA}\) (câu b)   \(\Rightarrow\)\(\frac{BI}{BM}=\frac{BC}{BA}\)

Xét  \(\Delta BIC\)và    \(\Delta BMA\)có:

     \(\widehat{B}\)chung

    \(\frac{BI}{BM}=\frac{BC}{BA}\) (cmt)

suy ra:   \(\Delta BIC~\Delta BMA\) (g.g)

\(\Rightarrow\) \(\widehat{ICB}=\widehat{BAM}\)    (1)

c/m:  \(\Delta CAI~\Delta BKI\) (g.g)   \(\Rightarrow\)\(\frac{IA}{IK}=\frac{IC}{IB}\) \(\Rightarrow\)\(\frac{IA}{IC}=\frac{IK}{IB}\)

Xét  \(\Delta IAK\)và     \(\Delta ICB\)có:

      \(\widehat{AIK}=\widehat{CIB}\) (dd)

      \(\frac{IA}{IC}=\frac{IK}{IB}\) (cmt)

suy ra:   \(\Delta IAK~\Delta ICB\)(g.g)

\(\Rightarrow\)\(\widehat{IAK}=\widehat{ICB}\) (2) 

Từ (1) và (2) suy ra:  \(\widehat{IAK}=\widehat{BAM}\)

hay  AB là phân giác của \(\widehat{MAK}\)

d)  \(AM\)là phân giác \(\widehat{CAB}\) \(\Rightarrow\)\(\widehat{MAB}=45^0\)

mà   \(\widehat{MAB}=\widehat{ICB}\) (câu c)  

\(\Rightarrow\)\(\widehat{ICB}=45^0\)

\(\Delta CKB\)vuông tại K có  \(\widehat{KCB}=45^0\)

\(\Rightarrow\)\(\widehat{CBK}=45^0\)

\(\Delta MBD\) vuông tại M  có   \(\widehat{MBD}=45^0\)

\(\Rightarrow\)\(\widehat{MDB}=45^0\)

hay   \(\Delta MBD\)vuông cân tại M

\(\Rightarrow\)\(MB=MD\)

\(\Delta ABC\) có  AM là phân giác 

\(\Rightarrow\)\(\frac{MB}{AB}=\frac{MC}{AC}\)

ÁP dụng định ly Pytago vào tam giác vuông ABC ta có:

     \(AB^2+AC^2=BC^2\)

\(\Rightarrow\)\(BC=10\)

ÁP dụng tính chất dãy tỉ số = nhau ta có:

    \(\frac{MB}{AB}=\frac{MC}{AC}=\frac{MB+MC}{AB+AC}=\frac{5}{7}\)

suy ra:   \(\frac{MB}{AB}=\frac{5}{7}\)  \(\Rightarrow\)\(MB=\frac{40}{7}\)

mà   \(MB=MD\) (cmt)

\(\Rightarrow\)\(MD=\frac{40}{7}\)

Vậy  \(S_{CBD}=\frac{1}{2}.CB.DM=\frac{1}{2}.10.\frac{40}{7}=\frac{200}{7}\)

\(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.8.6=24\)

\(\Delta ABC\) có  AM  là phân giác

\(\Rightarrow\)\(\frac{S_{CMA}}{S_{BMA}}=\frac{AC}{AB}=\frac{3}{4}\)

\(\Rightarrow\)\(\frac{S_{CMA}}{3}=\frac{S_{BMA}}{4}=\frac{S_{CMA}+S_{BMA}}{3+4}=\frac{24}{7}\)

\(\Rightarrow\)\(S_{CMA}=\frac{72}{7}\)

Vậy   \(S_{AMBD}=S_{CBD}-S_{CMA}=\frac{200}{7}-\frac{72}{7}=\frac{128}{7}\)

11 tháng 5 2018

C A M B K D I

a)  xét \(\Delta ABC\)  và \(\Delta MDC\)  có 

\(\widehat{ACB}=\widehat{MCD}\)  ( góc chung)

\(\widehat{CAB}=\widehat{CMD}=90^0\)  ( giả thiết )

\(\Rightarrow\Delta ABC\infty\Delta MDC\)  \(\left(g.g\right)\)

b) xét  \(\Delta BIM\) và \(\Delta BCA\)  có 

\(\widehat{IBM}=\widehat{CBA}\)  ( góc chung )

\(\widehat{BMI}=\widehat{BAC}=90^0\)

\(\Rightarrow\Delta BIM\infty\Delta BCA\left(g.g\right)\)

\(\Rightarrow\frac{BI}{BM}=\frac{BC}{BA}\)

\(\Rightarrow BI.BA=BM.BC\)

P/S tạm thời 2 câu này trước đi đã