Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{CAI}=90^0-\widehat{BAI}\)
\(\widehat{ACI}=\dfrac{\widehat{ACH}}{2}\)
Do đó: \(\widehat{CAI}+\widehat{ACI}=90^0+\dfrac{\widehat{BAH}}{2}-\widehat{BAI}=90^0\)
hay \(\widehat{AIC}=90^0\)
A B C H I k
Kí hiệu như trên hình.
Ta có góc IAH + góc AKH = 90 độ
Góc KAB + góc CAK = 90 độ. Mà góc HAI = góc KAB
=> Góc CAK = góc CKA => Tam giác CAK cân tại I
Mà CI là đường phân giác => CI vuông góc AK => góc AIC = 90 độ
a/ tam giác BAH và tam giác CAH có
AB=AC ( tam giác ABC cân vì góc B = góc C)
góc BHA = góc CHA = 90 độ
góc B = góc C
=> tam giác BAH = tam giác CAH (CH - GN)
=>góc BAH = góc HAC
Ta có hình vẽ:
Gọi phân giác C cắt AH tại M
Ta có: góc B + góc C = 900
Ta có: góc B + góc BAH = 900
=> góc BAH = góc C
Theo giả thiết, AI là phân giác của góc BAH
nên góc BAI = góc IAH
Theo giả thiết, CI là phân giác của góc C
nên góc HCI = góc ICA
Vì góc BAH = góc C nên góc IAH = góc HCI (1)
Ta có: góc IMA = góc HMC (đối đỉnh) (2)
Ta có: tổng ba góc của 1 tam giác bằng 1800 (3)
Từ (1),(2),(3) => góc AIM = góc MHC = 900
Vậy góc AIC = 900 (đpcm)